Details

Title

Investigations on an influence of the material properties on vibrations of active rocker-bogie suspension

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2022

Volume

70

Issue

1

Authors

Affiliation

Sokół, Krzysztof : Institute of Mechanic and Machine Design Foundations, Czestochowa University of Technology, Czestochowa, Poland ; Pierzgalski, Maciej : Institute of Mechanic and Machine Design Foundations, Czestochowa University of Technology, Czestochowa, Poland

Keywords

frequency analysis ; suspension ; rover ; mobile platform ; computational mechanics

Divisions of PAS

Nauki Techniczne

Coverage

e138239

Bibliography

  1.  S. García, P. Pelliccione, C. Menghi, T. Berger, and T. Bures, ”High-level mission specification for multiple robots”, in Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering, 2019, pp. 127–140, doi: 10.1145/3357766.3359535.
  2.  P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, “Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots”, in Lecture Notes in Computer Science, vol. 1741, 1999, doi: 10.1007/3-540-466320_10.
  3.  L. Moskvin, R. Lavrenov, E. Magid, and M., Svinin, “Modelling a crawler robot using wheels as pseudo-tracks: model complexity vs performance” in IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), pp. 1–5, 2020.
  4.  A. Halme, I. Leppanen, S. Salmi, and S. Ylonen, “Hybrid locomotion of wheel-legged machine”, in Proc. CLAWAR 2000 Conf. Professional Engineering, 2000, vol. 1, pp. 167–173.
  5.  Ch. Grand, F. BenAmar, F. Plumet, and Ph. Bidaud, “Stability control of a wheel-legged mini-rover”, in Proc. CLAWAR 2002 Conf. Professional Engineering, 2002, vol. 1, pp. 323–330.
  6.  A. Gronowicz and J. Szrek, “Idea of a quadruped wheel-legged robot”, The Arch. Mech. Eng., vol. 54, pp. 263–278, 2009, doi: 10.24425/ ame.2009.132101.
  7.  J. Szrek and P. Wójtowicz, “Idea of wheel-legged robot and its control system design”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 1, pp. 43–50, 2010, doi: 10.2478/v10175-010-0004-8.
  8.  V. Ţoţu and C. Alexandru, “Multi-criteria kinematic optimization of a front multi-link suspension mechanism using DOE screening and regression model”, Appl. Mech. Mater., vol. 332, 351–356, 2013.
  9.  P. Ptak, M. Pierzgalski, D. Cekus, and K. Sokół, “Modeling and stress analysis of a frame with a suspension of a mars rover”, Procedia Eng., vol. 177, pp. 175–181, 2017, doi: 10.1016/j.proeng.2017.02.215.
  10.  B. Babu, N. Dhayanidhi, and S. Dhamotharan, “Design and fabrication of rocker bogie mechanism geosurvey rover”, Int. J. Sci. Develop. Res., vol. 3, no. 8, pp. 154–159, 2018.
  11.  R. Murambikar, V. Omase, V. Nayak, K. Pati, and Y. Mahulkar, “Design and fabrication of rocker bogie mechanism using solar energy”, Int. Res. J. Eng. Technol., vol. 6, no. 4, pp. 143–147, 2019.
  12.  K. Sokół, D. Cekus, and M. Pierzgalski, “Design and stress analysis of a frame with suspension to multitask terrain rover”, in Engineering Mechanics 2019, 2019, pp. 283–286, doi: 10.21495/71-0-283.
  13.  K. Sokół and M. Pierzgalski, “An influence of the material properties on the endurance of the self-adjustable rocker-bogie suspension”, Arch. Metall. Mater., vol. 66, no. 2, pp. 543–548, 2021, doi: 10.24425/amm.2021.135891.
  14.  P. Pierzgalski, P. Ptak, D. Cekus, and K. Sokół, “Modeling and stress analysis of a manipulator mounted on a mars rover”, Procedia Eng., vol. 177, pp. 121–126, 2017, doi: 10.1016/j.proeng.2017.02.199.
  15.  M. Caffrey et al., “The processing electronics and detector of the Mars 2020 SHERLOC Instrument”, in IEEE Aerospace Conference, pp. 1–8, 2020. doi: 10.1109/AERO47225.2020.9172527.
  16.  L. Deflores, R. Beegle, and L. Bhartia, “SHERLOC: Scanning habitable environments with Raman & luminescence for organics & chemicals”, IEEE Aerospace Conference, 2015, doi: 10.1109/AERO.2015.7119105.
  17.  T.I. Uday et al., “Design and Implementation of the Next Generation Mars Rover”. in 21st International Conference of Computer and Information Technology (ICCIT), 2018, pp. 1–6, doi: 10.1109/ICCITECHN.2018.8631928.
  18.  The University Rover Challenge. [Online]. Available: http://urc.marssociety.org/home/urc-news [Accessed: 10.03.2021].
  19.  O. Zienkiewicz, Metoda elementów skończonych. Arkady, Warszawa, 1972.
  20.  I. Rokach, “Generation and modification of meshes, assessment of their quality, achieving the convergence of results manually and using the self-adaptation procedure”. [Online] Available: http://www.tu.kielce.pl/~rokach/instr/mes_siatki.htm [Accessed 08.02.2021].

Date

25.02.2022

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.138239
×