Details
Title
The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source termJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
6Authors
Affiliation
Błasik, Marek : Institute of Mathematics, Czestochowa University of Technology, al. Armii Krajowej 21, 42-201 Czestochowa, PolandKeywords
fractional derivatives and integrals ; integro-differential equations ; numerical methods ; finite difference methodsDivisions of PAS
Nauki TechniczneCoverage
e138240Bibliography
- T. Kosztołowicz, K. Dworecki, and S. Mrówczyński, “How to measure subdiffusion parameters,” Phys. Rev. Lett., vol. 94, p. 170602, 2005, doi: 10.1016/j.tins.2004.10.007.
- T. Kosztołowicz, K. Dworecki, and S. Mrówczyński, “Measuring subdiffusion parameters,” Phys. Rev. E, vol. 71, p. 041105, 2005.
- E. Weeks, J. Urbach, and L. Swinney, “Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example,” Physica D, vol. 97, pp. 291–310, 1996.
- T. Solomon, E. Weeks, and H. Swinney, “Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow,” Phys. Rev. Lett., vol. 71, pp. 3975–3979, 1993.
- N.E. Humphries, et al., “Environmental context explains Lévy and Brownian movement patterns of marine predators,” Nature, vol. 465, pp. 1066–1069, 2010.
- U. Siedlecka, “Heat conduction in a finite medium using the fractional single-phase-lag model,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, pp. 402–407, 2019.
- R. Metzler and J. Klafter, “The random walk:s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep., vol. 339, pp. 1–77, 2000.
- R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A: Math. Gen., vol. 37, pp. 161–208, 2004.
- M. Aslefallah, S. Abbasbandy, and E. Shivanian, “Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method,” Eng. Anal. Boundary Elem., vol. 107, pp. 198–207, 2019.
- Y. Li and D. Wang, “Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term,” Int. J. Comput. Math., vol. 94, pp. 821–840, 2017.
- X. Cao, X. Cao, and L. Wen, “The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term,” J. Comput. Appl. Math., vol. 318, pp. 199–210, 2017.
- A. Kilbas, H. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006.
- E.D. Rainville, Special Functions. New York: The Macmillan Company, 1960.
- J.-L. Liu and H.MSrivastava, “Classes of meromorphically multivalent functions associated with the generalized hypergeometric function,” Math. Comput. Modell., vol. 39, pp. 21–34, 2004.
- Y.L. Luke, “Inequalities for generalized hypergeometric functions,” J. Approximation Theory, vol. 5, pp. 41–65, 1972.
- M. Włodarczyk and A. Zawadzki, “The application of hypergeometric functions to computing fractional order derivatives of sinusoidal functions,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, pp. 243–248, 2016.
- M. Błasik, “A generalized Crank-Nicolson method for the solution of the subdiffusion equation,” 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 726–729, 2018.
- M. Błasik, “Zagadnienie stefana niecałkowitego rzędu,” Ph.D. dissertation, Politechnika Częstochowska, 2013.
- M. Błasik and M. Klimek, “Numerical solution of the one phase 1d fractional stefan problem using the front fixing method,” Math. Methods Appl. Sci., vol. 38, no. 15, pp. 3214–3228, 2015.
- K. Diethelm, The Analysis of Fractional Differential Equations. Berlin: Springer-Verlag, 2010.