Details

Title

Anomalous flashovers of silicone rubber insulators under the artificial rain test

Journal title

Archives of Electrical Engineering

Yearbook

2021

Volume

vol. 70

Issue

No 4

Authors

Affiliation

Chrzan, Krystian Leonard : Wroclaw University of Technology, Poland ; Brzeziński, Henryk Marek : Łukasiewicz Research Network – Institute of Electrical Engineering, Poland

Keywords

flashover ; leakage distance ; porcelain insulator ; silicone rubber insulator

Divisions of PAS

Nauki Techniczne

Coverage

835-844

Publisher

Polish Academy of Sciences

Bibliography

[1] Kuhlman K., Hochspannungsisolatoren, Elektrotechnische Zeitschrift (in German), vol. 31, iss. 3, pp. 51–55 (1910).
[2] Lustgarten J., High-tension porcelain line insulators, Journal of the Institution of Electrical Engineers, vol. 49, pp. 235–279 (1912).
[3] IEC 60060-1:2010, High-voltage test techniques – Part 1: General definitions and test requirements, edition 3 (2010).
[4] Gallet G., How to design a rain apparatus for the dielectric tests, IEEE PES Summer Meeting, San Francisco, paper A 75 490-3 (1975).
[5] Huc J., Rowe S.W., Wet testing installation design, 5th Int. Symposium on High Voltage Engineering, Athens, paper 52.03 (1983).
[6] Chrzan K.L., Streubel H., Artificial rain test of outdoor long rod insulators, Int. Symposium on High Voltage Engineering, ISH, Cap Town, paper E-31 (2009).
[7] Rizk F.A.M., Kamel S.I., Modelling of HVDC wall bushing flashover in nonuniform rain, IEEE Trans. on Power Delivery, vol. 6, no. 4, pp. 1650–1662 (1991).
[8] Matsuoka M., Naito K., Irie T., Kondo K., Evaluation methods of polymer insulators under contaminated conditions, IEEE Transmission and Distribution Asia Pacific Conference, pp. 2197–2202 (2002).
[9] Chrzan K.L., Swierzyna Z., Artificial rain test of insulators, Przegl˛ad Elektrotechniczny (in Polish), no. 11b, pp. 218–221 (2012).
[10] Szpor S., Dzierzek H.,WiniarskiW., High voltage engineering, WNT (in Polish),Warsaw, vol. 1, p. 88 (1978).
[11] Estorff W., Cron H., High Voltage insulator as pollution problem, ETZ (in German), vol. 73, iss. 3, pp. 57–62 (1952).
[12] Chrzan K.L., Leakage currents on naturally contaminated porcelain and silicone insulators, IEEE Trans. on Power Delivery, vol. 25, no. 2, pp. 904–910 (2010), DOI: 10.1109/TPWRD.2009.2034665.
[13] Streubel H., Calculation of AC Flashover voltage under rain, Hermsdorfer Technische Mitteilungen (in German), iss. 31, pp. 974–980 (1971).
[14] Lan L., Gorur R.S., Computation of ac wet flashover voltage of ceramic and composite insulators, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 5, pp. 1346–1352 (2008), DOI: 10.1109/TDEI.2008.4656243.
[15] Erler F., About AC pollution flashover on thick insulators, Elektrie (in German), iss. 3, pp. 100–102 (1969).
[16] Hao Y., Liao Y., Kuang Z., Sun Y., Shang G., Zhang W., Mao G., Yang L., Zhang F., Li L., Experimental investigation on influence of shed parameters on surface rainwater characteristics of largediameter composite post insulators under rain conditions, Energies, vol. 13, no. 19, 5011 (2020), DOI: 10.3390/en13195011.
[17] Ely C.H.A., Lambeth P.J., Looms J.S.T., The booster shed: prevention of flashover of polluted substation insulators in heavy wetting, IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, no. 6, pp. 2187–2197 (1978).
[18] Yang L., Kuang Z., Sun Y., Liao Y., Hao Y., Li L., Zhang F., Study on Surface Rainwater and Arc Characteristics of High-Voltage Bushing with Booster Sheds under Heavy Rainfall, IEEE Access, vol. 6, pp. 146865–146875 (2020), DOI: 10.1109/ACCESS.2020.3012978.
[19] Okada N., Ikeda K., Kondo K., Ito S., Contamination withstand voltage characteristics of hydrophobic polymers insulators under simulated rain conditions, IEEE Int. Symposium on Electrical Insulation, Boston, USA, pp. 228–231 (2002).
[20] Gorur R.S., de la O A., El-Kishky A., Chowdhary M., Mukherjee H., Sundaram R., Burnham J.T., Sudden flashovers of nonceramic insulators in artificial contamination tests, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 3, no. 1, pp. 79–86 (1997), DOI: 10.1109/94.590870.
[21] Hartings R., The AC-Behavior of a Hydrophilic and Hydrophobic Post Insulator during Rain, IEEE Trans. on Power Delivery, vol. 9, no. 3, pp. 1584–1592 (1994).
[22] Wang S., Liang X., Huang L., Experimental study on the pollution flashover mechanism of polymer insulators, IEEE Power Engineering Society Winter Meeting, Singapore, pp. 2830–2833 (2000), DOI: 10.1109/PESW.2000.847332.
[23] de la O A., Gorur R.S., Flashover of contaminated nonceramic outdoor insulators in a wet atmosphere, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 6, pp. 814–823 (1998), DOI: 10.1109/94.740762.

Date

2021.11.30

Type

Article

Identifier

DOI: 10.24425/aee.2021.138264
×