A combined method for wind power generation forecasting

Journal title

Archives of Electrical Engineering




vol. 70


No 4


Le, Tuan-Ho : Faculty of Engineering and Technology, Quy Nhon University, Quy Nhon, Binh Dinh Province, 820000, Vietnam



autoregressive integrated moving average ; exponential smoothing method ; forecasting ; response surface methodology ; wind power

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


[1] Ren G., Liu J.,Wan J., Guo Y., Yu D., Overview of wind power intermittency: Impacts, measurements, and mitigation solutions, Applied Energy, vol. 204, pp. 47–65 (2017), DOI: 10.1016/j.apenergy.2017.06.098.
[2], accessed March 2021.
[3] Lerner J., Grundmeyer M., Garvert M., The importance of wind forecasting, Renewable Energy Focus, vol. 10, no. 2, pp. 64–6 (2009).
[4] Li G., Shi J., On comparing three artificial neural networks for wind speed forecasting, Applied Energy, vol. 87, pp. 2313–2320 (2010).
[5] ChangW.Y., A literature review of wind forecasting methods, Journal of Power and Energy Engineering, vol. 2, no. 04, pp. 161–168 (2014), DOI: 10.4236/jpee.2014.24023.
[6] Barbosa de Alencar D., de Mattos Affonso C., Limão de Oliveira R.C., Moya Rodriguez J.L., Leite J.C., Reston Filho J.C., Different models for forecasting wind power generation: Case study, Energies, vol. 10, no. 12, 1976 (2017), DOI: 10.3390/en10121976.
[7] Kusiak A., Zhang Z., Short-horizon prediction of wind power: A data-driven approach, IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1112–1122 (2010), DOI: 10.1109/TEC.2010.2043436.
[8] Zhu X., Genton M.G., Short-term wind speed forecasting for power system operations, International Statistical Review, vol. 80, no. 1, pp. 2–23 (2012).
[9] Jónsson T., Pinson P., Nielsen H.A., Madsen H., Exponential smoothing approaches for prediction in real-time electricity markets, Energies, vol. 7, no. 6, pp. 3710–3732 (2014), DOI: 10.3390/en7063710.
[10] Hodge B.M., Zeiler A., Brooks D., Blau G., Pekny J., Reklatis G., Improved wind power forecasting with ARIMA models, Computer Aided Chemical Engineering, vol. 29, pp. 1789–1793 (2011), DOI: 10.1016/B978-0-444-54298-4.50136-7.
[11] Chen P., Pedersen T., Bak-Jensen B., Chen Z., ARIMA-based time series model of stochastic wind power generation, IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 667–676 (2009).
[12] Kavasseri R.G., Seetharaman K., Day-ahead wind speed forecasting using f-ARIMA models,Renewable Energy, vol. 34, no. 5, pp. 1388–1393 (2009), DOI: 10.1016/j.renene.2008.09.006.
[13] Torres J.L., Garcia A., De Blas M., De Francisco A., Forecast of hourly average wind speed with ARMA models in Navarre (Spain), Solar energy, vol. 79, no. 1, pp. 65–77 (2005), DOI: 10.1016/j.solener.2004.09.013.
[14] Sfetsos A., A novel approach for the forecasting of mean hourly wind speed time series, Renewable energy, vol. 27, no. 2, pp. 163–174 (2002), DOI: 10.1016/S0960-1481(01)00193-8.
[15] Dumitru C.D., Gligor A., Daily average wind energy forecasting using artificial neural networks, Procedia Engineering, vol. 181, pp. 829–836 (2017), DOI: 10.1016/j.proeng.2017.02.474.
[16] Peiris A.T., Jayasinghe J., Rathnayake U., Forecasting Wind Power Generation Using Artificial Neural Network:“Pawan Danawi”—A Case Study from Sri Lanka, Journal of Electrical and Computer Engineering (2021), DOI: 10.1155/2021/5577547.
[17] Liu Y., Zhang H., An empirical study on machine learning models for wind power predictions, In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 758–763 (2016), DOI: 10.1109/ICMLA.2016.0135.
[18] RanganayakiV., Deepa S.N., An intelligent ensemble neural network model for wind speed prediction in renewable energy systems, The ScientificWorld Journal (2016), DOI: 10.1155/2016/9293529.
[19] Sapronova A., Meissner C., Mana M., Short time ahead wind power production forecast, Journal of Physics: Conference Series, vol. 749, no. 1, 012006 (2016), DOI: 10.1088/1742-6596/749/1/012006.
[20] López E., Valle C., Allende-Cid H., Allende H., Comparison of recurrent neural networks for wind power forecasting, In Mexican Conference on Pattern Recognition, pp. 25–34, Springer (2020), DOI: 10.1007/978-3-030-49076-8_3.
[21] Manero J., Béjar J., Cortés U., Predicting wind energy generation with recurrent neural networks, In International Conference on Intelligent Data Engineering and Automated Learning, pp. 89–98, Springer (2018), DOI: 10.1007/978-3-030-03493-1_10.
[22] Liu B., Zhao S., Yu X., Zhang L.,Wang Q., A novel deep learning approach for wind power forecasting based on WD-LSTM model, Energies, vol. 13, no. 18, pp. 4964 (2020), DOI: 10.3390/en13184964.
[23] Dong D., Sheng Z., Yang T.,Wind power prediction based on recurrent neural network with long shortterm memory units, In 2018 International Conference on Renewable Energy and Power Engineering (REPE), pp. 34–38 (2018), DOI: 10.1109/REPE.2018.8657666.
[24] Zeng J., QiaoW., Support vector machine-based short-termwind power forecasting, In 2011 IEEE/PES Power Systems Conference and Exposition, pp. 1–8 (2011), DOI: 10.1109/PSCE.2011.5772573.
[25] Wang J., Sun J., Zhang H., Short-term wind power forecasting based on support vector machine, In 2013 5th International Conference on Power Electronics Systems and Applications (PESA), pp. 1–5 (2013), DOI: 10.1109/PESA.2013.6828211.
[26] Li L.L., Zhao X., Tseng M.L., Tan R.R., Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm, Journal of Cleaner Production, vol. 242, 118447 (2020), DOI: 10.1016/j.jclepro.2019.118447.
[27] Popławski T., Szel˛ag P., Bartnik R., Adaptation of models from determined chaos theory to short-term power forecasts for wind farms, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 68, no. 6, pp. 1491–1501 (2020), DOI: 10.24425/bpasts.2020.135400.
[28] Zhu L., Shi H., Ding M., Gao T., Jiang Z., Wind power prediction based on the chaos theory and the GABP neural network, In 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pp. 4221–4224 (2019), DOI: 10.1109/ISGT-Asia.2019.8881549.
[29] Wang C., Zhang H., FanW., Fan X., A new wind power prediction method based on chaotic theory and Bernstein Neural Network, Energy, vol. 117, pp. 259–271 (2016), DOI: 10.1016/
[30] Yuan X., Tan Q., Lei X., Yuan Y.,Wu X., Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine, Energy, vol. 129, pp. 122–137 (2017), DOI: 10.1016/
[31] Lau A., McSharry P., Approaches for multi-step density forecasts with application to aggregated wind power, The Annals of Applied Statistics, vol. 4, no. 3, pp. 1311–1341 (2010), DOI: 10.1214/09-AOAS320.
[32] Hwang M.Y., Jin C.H., Lee Y.K., Kim K.D., Shin J.H., Ryu K.H., Prediction of wind power generation and power ramp rate with time series analysis, In 2011 3rd International Conference on Awareness Science and Technology (iCAST), pp. 512–515 (2011), DOI: 10.1109/ICAwST.2011.6163182.
[33] Reddy V., Verma S.M., Verma K., Kumar R., Hybrid approach for short term wind power forecasting, In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–5 (2018), DOI: 10.1109/ICCCNT.2018.8494034.
[34] Jiang Y., Xingying C.H.E.N., Kun Y.U., Yingchen L.I.A.O., Short-term wind power forecasting using hybrid method based on enhanced boosting algorithm, Journal of Modern Power Systems and Clean Energy, vol. 5, no. 1, pp. 126–133 (2017), DOI: 10.1007/s40565-015-0171-6.
[35] Landberg L., A mathematical look at a physical power prediction model, Wind Energy, vol. 1, no. 1, pp. 23–28 (1998).
[36] ChangW.Y., A literature review of wind forecasting methods, Journal of Power and Energy Engineering, vol. 2, no. 04, pp. 161–168 (2014), DOI: 10.4236/jpee.2014.24023.
[37] Hanifi S., Liu X., Lin Z., Lotfian S., A critical review of wind power forecasting methods—past, present and future, Energies, vol. 13, no. 15, 3764 (2020), DOI: 10.3390/en13153764.
[38] Box G.E., Wilson K.B., On the experimental attainment of optimum conditions, Journal of the Royal Statistical Society. Series B. Methodological, vol. 13, pp. 1–45 (1951).
[39] Myers R.H., Montgomery D.C., Anderson-Cook C.M., Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons (2016).
[40] Makridakis S., Winkler R.L., Averages of forecasts: Some empirical results, Management science, vol. 29, no. 9, pp. 987–996 (1983).






DOI: 10.24425/aee.2021.138274