Tytuł artykułu

Dynamics of autonomous rock electromagnetic radiation measurement instrumentation

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences Technical Sciences








Mydlikowski, Remigiusz : Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Maniak, Krzysztof : National Institute of Telecommunications, ul. Szachowa 1, 04-894 Warsaw, Poland


Słowa kluczowe

electromagnetic fields ; EM receiver ; rock destruction ; dynamics of operation

Wydział PAN

Nauki Techniczne




  1.  M. Akgun, “Coal mine accidents,” Turk Thorac Journal, vol. 16, no. 1, pp. s1–s2, 2015, doi: 10.5152/ttd.2015.008.
  2.  A. Tubis, S. Werbińska-Wojciechowska, and A. Wróblewski, “Risk assessment methods in mining industry – A systematic review,” Appl. Sci., vol. 10, pp.1‒34, 2020, doi: 10.3390/app10155172.
  3.  J.L.X. Meng, Y. Wang, and Z. Yang, “Prediction of coal seam details and mining safety using multicomponent seismic data: A case history from China,” Geophysics, vol. 81, no. 5 (September – October), pp. 149–165, 2016, doi: 10.1190/GEO2016-0009.1.
  4.  Y. Wang, N. Fu, X. Lu, and Z. Fu, “Application of a new geophone and geometry in tunnel seismic detection,” Sensors, vol.  19, p. 1246, 2019, doi: 10.3390/s19051246.
  5.  R.M. Bhattacharjeeb, A.K. Dasha, and P.S. Paulb, “A root cause failure analysis of coal dust explosion disaster – Gaps and lessons learnt,” Eng. Fail. Anal., vol. 111, pp. 1‒17, 2020, doi: 10.1016/j.engfailanal.2019.104229.
  6.  M. Li et al., “Piezoelectric effect and ignition properties of coal mine roof sandstone deformation and fracture,” Fuel, vol. 290, pp. 1‒9, 2021, doi: 10.1016/j.fuel.2020.120007.
  7.  M. Hayakawa, “Earthquake precursor studies in Japan” in Pre‐Earthquake Processes, Wiley, pp.7‒18, 2018, doi: 10.1002/ 9781119156949.ch2.
  8.  B. Kunar, “Risk assessment for disaster management in underground coal mines,” Indian Miner. Ind. J., vol. 11, pp.  113‒119, 2015.
  9.  G.-J. Liu, C.-P. Lu, H.-Y. Wang, P.-F. Liu, and Y. Liu, “Warning method of coal bursting failure danger by electromagnetic radiation,” Shock Vib., vol. 2015, p. 583862, 2015, doi: 10.1155/2015/583862.
  10.  E. Wang, H. Jia, D. Song, N. Li, and W. Qian, “Use of ultra-low-frequency electromagnetic emission to monitor stress and failure in coal mines,” Int. J. Rock Mech. Min. Sci., vol. 70, pp. 16–25, 2014, doi: 10.1016/j.ijrmms.2014.02.004.
  11.  A.A. Panfilov, “The results of experimental studies of VLF–ULF electromagnetic emission by rock samples due to mechanical action,” Nat. Hazards Earth Syst. Sci. Discuss., vol. 1, pp. 7821–7842, 2013, doi: 10.5194/nhessd-1-7821-2013.
  12.  Z. Shijiea, S. Xiaoyuanc, L. Chengwub, X. Xiaoxuan, and X. Zhuang, “The analysis of coal or rock electromagnetic radiation (EMR) signals based on Hilbert-Huang transform (HHT),” First International Symposium on Mine Safety Science and Engineering, Procedia Engineering, vol. 26, pp. 689‒698, 2011.
  13.  R. Mydlikowski and K. Maniak, “Measurement of electromagnetic field component emission as a precursor of emerging hazard in coal mines,” J. Telecomm. Inf.Technol., vol. 4, pp. 30‒35, 2019, doi: 10.26636/jtit.2020.145320.
  14.  A. Prałat, K. Maniak, and I. Pompura, “Electromagnetic phenomena in landslides,” Acta Geodynamica and Geomaterialia, vol.  2, no. 3, pp. 131‒138, 2005.
  15.  V. Frid, “Calculation of electromagnetic radiation criterion of rockburst hazard forecast in coal mines,” Pure Appl. Geophys., vol. 158, pp. 931‒944, 2001, doi: 10.1007/PL00001214.
  16.  V. Frid and K. Vozoff, “Electromagnetic radiation induced by mining rock failure,” Int. J. Coal Geol., vol. 64, pp. 57‒65, 2005, doi: 10.1016/j.coal.2005.03.005.
  17.  D. Lin-ming, L. Cai-ping, M. Zong-long, and G. Ming-shi, “Prevention and forecasting of rock burst hazards in coal mines,” Min. Sci. Technol., vol. 19, pp. 585–591, 2009, doi: 10.1016/S1674-5264(09)60109-5.
  18.  S.G. O’Keefe and D.Thiel, “Electromagnetic emissions during rock blasting,” Geophys. Res. Lett., vol. 18, no. 5, pp.  889‒892, 1991, doi: 10.1029/91GL01076.
  19.  P. Xiong et al., “Identification of electromagnetic pre-earthquake perturbations from the DEMETER data by machine learning,” Remote Sens., vol. 12, pp. 1‒27, 2020, doi: 10.3390/rs12213643.
  20.  A. Erturk and D.J. Inman, Piezoelectric Energy Harvesting, First Edition, John Wiley & Sons, Ltd. Published 2011, pp. 343‒344.
  21.  M. Krumbholz, M. Bock, S. Burchardt, U. Kelka, and A. Vollbrecht, “A critical discussion of the electromagnetic radiation (EMR) method to determine stress orientations within the crust,” Solid Earth, vol. 3, pp. 401‒414, 2012, doi: 10.5194/sed-4-993-2012.
  22.  A. Rabinovitch, V. Frid, D. Bahat ,and J. Goldbaum, “Decay mechanism of fracture induced electromagnetic pulses,” J. Appl. Phys., vol. 93, no. 9, pp 5085–5090, 2003, doi: 10.1063/1.1562752.
  23.  A. Rabinovitch, V. Frid, and D. Bahat, “Surface oscillations. A possible source of fracture induced electromagnetic radiation,” Tectonophysics, vol. 431, pp 15‒21, 2007, doi: 10.1016/j.tecto.2006.05.027.
  24.  A. Takeuchi and H. Nagahama, “Electric dipoles perpendicular to a stick-slip plane,” Phys. Earth Planet. Inter., vol.  155, pp. 208–218, 2006, doi: 10.1016/j.pepi.2005.12.010.
  25.  P. Koktavy and J. Sikula, “Physical model of electromagnetic emission in solids,” Proc. 26th Eur. Conf. Acous. Emission Testing EWGAE 2004, Berlin, Germany, 2004, pp. 899‒904.
  26.  S.K. Sharma, R. Kiran, A. Kumar, V.S. Chauhan, and R. Kumar, “A theoretical model for the electromagnetic radiation emission from hydrated cylindrical cement paste under impact,” J. Phys. Commun., vol. 2, no. 3, pp. 1‒12, 2018,
  27.  D. Miedzińska, T. Niezgoda, E. Małek, and D. Zasada, “Study on coal microstructure for porosity levels assessment,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 409‒505, 2013, doi: 10.2478/bpasts-2013-0049.
  28.  F. Zhao, Y. Li, Z. Ye, Y. Fan, S. Zhang, H. Wang, and Y. Liu, “Research on acoustic emission and electromagnetic emission characteristics of rock fragmentation at different loading rates,” Shock Vib., vol. 2018, p. 4680879, 2018, doi: 10.1155/2018/4680879.
  29.  Z. Loni, H. Espinosa, and D. Thiel, “Insulated wire fed floating monopole antenna for coastal monitoring,” Radioengineering, vol. 27, no. 1, pp. 127–133, 2018, doi: 10.13164/re.2018.0127.
  30.  V. Dyo, T. Ajmal, B. Allen, D. Jazani, and I. Ivanov, “Design of a ferrite rod antenna for harvesting energy from medium wave broadcast signals,” J. Eng., vol. 2013, no. 12, pp. 89–96, 2013, doi: 10.1049/joe.2013.0126.
  31.  T. Bolton and M.B. Cohen, “Optimal design of electrically-small loop receiving antenna,” Prog. Electromagn. Res. C, vol. 98, pp. 155–169, 2020, doi: 10.2528/PIERC19090911.
  32.  U. Tietze, Ch. Schenk, and E. Gamm, Electronic Circuits–Handbook for Design and Application, 2nd Edition. Springer, 2011, pp. 787‒841.






DOI: 10.24425/bpasts.2021.138567 ; ISSN 2300-1917