Szczegóły

Tytuł artykułu

Optimal Choice of the Number of Ground Control Points for Developing Precise DSM Using Light-Weight UAV in Small and Medium-Sized Open-Pit Mine

Tytuł czasopisma

Archives of Mining Sciences

Rocznik

2021

Wolumin

vol. 66

Numer

No 3

Afiliacje

Long, Nguyen Quoc : Hanoi University of Mining and Geology, Faculty of Geomatics and Land Administration,18 Vien street, Hanoi, 10000, Vietnam ; Goyal, Ropesh : Indian Institute of Technology Kanpur, Department of Civil Engineering, Kanpur-208016, Uttar Pradesh, India ; Bui, Luyen K. : Hanoi University of Mining and Geology, Faculty of Geomatics and Land Administration,18 Vien street, Hanoi, 10000, Vietnam ; Cuong, Cao Xuan : Hanoi University of Mining and Geology, Faculty of Geomatics and Land Administration,18 Vien street, Hanoi, 10000, Vietnam ; Canh, Le Van : Hanoi University of Mining and Geology, Faculty of Geomatics and Land Administration,18 Vien street, Hanoi, 10000, Vietnam ; Minh, Nguyen Quang : Hanoi University of Mining and Geology, Faculty of Geomatics and Land Administration,18 Vien street, Hanoi, 10000, Vietnam ; Bui, Xuan-Nam : Hanoi University of Mining and Geology, Faculty of Mining,18 Vien street, Hanoi, 10000, Vietnam

Autorzy

Słowa kluczowe

Lightweight UAV ; Digital Surface Model ; Ground Control Points ; Small and Medium-Sized Open-pit Mine

Wydział PAN

Nauki Techniczne

Zakres

369-384

Wydawca

Committee of Mining PAS

Bibliografia


[1] B. Kršák, P. Blišťan, A. Pauliková, P. Puškárová, Ľ. Kovanič, J. Palková, V. Zelizňaková, Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Measurement 91, 276-287 (2016). DOI: https://doi.org/10.1016/j.measurement.2016.05.028
[2] C . Cryderman, S.B. Mah, A. Shufletoski, Evaluation of UAV Photogrammetric Accuracy for Mapping and Earthworks Computations. GEOMATICA 68, 309-317 (2014). DOI: https://doi.org/10.5623/cig2014-405
[3] C . Hugenholtz, O. Brown, J. Walker, T. Barchyn, P. Nesbit, M. Kucharvzyk, S. Myshak, Spatial accuracy of UAVderived orthoimagery and topography: comparing photogrammetric models processed with direct geo-referencing and ground control points. GEOMATICA 70, 21-30 (2016). DOI: https://doi.org/10.5623/cig2016-102
[4] D. Tien Bui, N.Q. Long, X.-N. Bui, V.-N. Nguyen, C. Van Pham, C. Van Le, P.-T.T. Ngo, D. Tien Bui, B. Kristoffersen, Lightweight Unmanned Aerial Vehicle and Structure-from-Motion Photogrammetry for Generating Digital Surface Model for Open-Pit Coal Mine Area and Its Accuracy Assessment, in: D. Tien Bui, A. Ngoc Do, H.-B. Bui, N.-D. Hoang, (eds.), Advances and Applications in Geospatial Technology and Earth Resources, Springer International Publishing, Cham, 17-33 (2018). DOI: https://doi.org/10.1007/978-3-319-68240-2_2
[5] F . Agüera-Vega, F. Carvajal-Ramírez, P. Martínez-Carricondo, Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry. J. Surv. Eng. 143, 04016025 (2017). DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000206
[6] F . Beretta, H. Shibata, R. Cordova, R. de L. Peroni, J. Azambuja, J.F.C.L. Costa, Topographic modelling using UAVs compared with traditional survey methods in mining. REM, Int. Eng. J. 71, 463-470 (2018). DOI: https://doi.org/10.1590/0370-44672017710074
[7] F . Mancini, M. Dubbini, M. Gattelli, F. Stecchi, S. Fabbri, G. Gabbianelli, Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sensing 5, 6880-6898 (2013). DOI: https://doi.org/10.3390/rs5126880
[8] G . Esposito, G. Mastrorocco, R. Salvini, M. Oliveti, P. Starita, Application of UAV photogrammetry for the multitemporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 76, 103 (2017). DOI: https://doi.org/10.1007/s12665-017-6409-z
[9] G . Forlani, E. Dall’Asta, F. Diotri, U.M. di Cella, R. Roncella, M. Santise, Quality assessment of DSMs produced from UAV flights geo-referenced with onboard RTK positioning. Remote Sensing 10, 311 (2018). DOI: https://doi.org/10.3390/rs10020311
[10] J. Fernández-Lozano, A. González-Díez, G. Gutiérrez-Alonso, R. Carrasco, J. Pedraza, J. García-Talegón, G. Alonso- Gavilán, J. Remondo, J. Bonachea, M. Morellón, New perspectives for UAV-based modelling the Roman gold mining infrastructure in NW Spain. Minerals 8, 518 (2018). DOI: https://doi.org/10.3390/min8110518
[11] J. Malos, B. Beamish, L. Munday, P. Reid, C. James, Remote monitoring of subsurface heatings in opencut coal mines, in: N. Aziz and B. Kininmonth (eds.), Proceedings of the 2013 Coal Operators’ Conference, Mining Engineering, University of Wollongong (2013).
[12] J.-C. Padró, V. Carabassa, J. Balagué, L. Brotons, J.M. Alcañiz, X. Pons, Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 657, 1602-1614 (2019). DOI: https://doi.org/10.1016/j.scitotenv.2018.12.156
[13] J.K.S. Villanueva, A.C. Blanco, Optimization of ground control point (GCP) configuration for unmanned aerial vehicle (UAV) survey using structure from motion (SfM). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-4/W12, 167-174 (2019). DOI: https://doi.org/10.5194/isprs-archives-XLII-4-W12-167-2019
[14] J.M.G. Rangel, G.R. Gonçalves, J.A. Pérez, The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. Int. J. Remote Sens. 39, 7154-7171 (2018). DOI: https://doi.org/10.1080/01431161.2018.1515508
[15] K. Szentpeteri, T.R. Setiawan, A. Ismanto, Drones (UAVs) in mining and Exploration. An application example: pit mapping and geological modelling, in: Unconventional Exploration Target & Latest Technique and New Tools in Mineral and Coal Exploration, (2016).
[16] K.N. Tahar, An evaluation on different number of ground control points in unmanned aerial vehicle photogrammetric block, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-2/W2, 93-98 (2013). DOI: https://doi.org/10.5194/isprsarchives-XL-2-W2-93-2013
[17] L. Ge, X. Li, A.H.-M. Ng, UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia, in: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, 5422-5425 (2016). DOI: https://doi.org/10.1109/IGARSS.2016.7730412
[18] Ľ. Kovanič, P. Blišťan, V. Zelizňaková, J. Palková, Surveying of open pit mine using low-cost aerial photogrammetry, in I. Ivan, A. Singleton, J. Horák, T. Inspektor (Eds.), The Rise of Big Spatial Data. Springer International Publishing, Cham (2017). DOI: https://doi.org/10.1007/978-3-319-45123-7_9
[19] L. Van Canh, C. Xuan Cuong, N. Quoc Long, L. Thi Thu Ha, T. Trung Anh, X.-N. Bui, Experimental Investigation on the Performance of DJI Phantom 4 RTK in the PPK Mode for 3D Mapping Open-Pit Mines. Inżynieria Mineralna 1, 65-74 (2020). DOI: https://doi.org/10.29227/IM-2020-02-10
[20] M. Alvarado, F. Gonzalez, A. Fletcher, A. Doshi, Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors 15, 19667-19687 (2015). DOI: https://doi.org/10.3390/s150819667
[21] M. Francioni, R. Salvini, D. Stead, R. Giovannini, S. Riccucci, C. Vanneschi, D. Gullì, An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: Slope stability assessment through kinematic and numerical methods. Comput. Geotech. 67, 46-63 (2015). DOI: https://doi.org/10.1016/j.compgeo.2015.02.009
[22] M. Shahbazi, G. Sohn, J. Théau, P. Menard, Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling. Sensors 15, 27493-27524 (2015). DOI: https://doi.org/10.3390/s151127493
[23] M.R. James, S. Robson, M.W. Smith, 3-D uncertainty-based topographic change detection with structure-frommotion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landforms 42, 1769-1788 (2017). DOI: https://doi.org/10.1002/esp.4125
[24] M.R. James, S. Robson, S. d’Oleire-Oltmanns, U. Niethammer, Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 280, 51-66 (2017). DOI: https://doi.org/10.1016/j.geomorph.2016.11.021
[25] N.Q. Long, B.X. Nam, C.X. Cuong, L.V. Canh, An approach of mapping quarries in Vietnam using low-cost Unmanned Aerial Vehicles. Inżynieria Mineralna 11, 248-262 (2019). DOI: https://doi.org/10.29227/IM-2019-02-79
[26] O . Mian, J. Lutes, G. Lipa, J.J. Hutton, E. Gavelle, S. Borghini, Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-1/W4, 397-402 (2015). DOI: https://doi.org/10.5194/isprsarchives-XL-1-W4-397-2015
[27] P .L. Raeva, S.L. Filipova, D.G. Filipov, Volume computation of a stockpile-a study case comparing GPS and UAV measurements in an open pit quarry. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B1, 999-1004 (2016). DOI: https://doi.org/10.5194/isprsarchives-XLI-B1-999-2016
[28] S. Coveney, K. Roberts, Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. Int. J. Remote Sens. 38, 3159-3180 (2017). DOI: https://doi.org/10.1080/01431161.2017.1292074
[29] T. Tonkin, N. Midgley, Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry. Remote Sensing 8, 786 (2016). DOI: https://doi.org/10.3390/rs8090786
[30] Z. Ren, J. Tang, T. Kalscheuer, H. Maurer, Fast 3‐D large‐scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method. J. Geophys. Res. Solid Earth 122, 79-109 (2017). DOI: https://doi.org/10.1002/2016JB012987

Data

2021.09.27

Typ

Article

Identyfikator

DOI: 10.24425/ams.2021.138594 ; ISSN 0860-7001
×