Details

Title

Effect of Cathodic Protection on Corrosion of Water-pipe Network in Kraków - Case Study

Journal title

Archives of Foundry Engineering

Yearbook

2021

Volume

vo. 21

Numer

No 3

Affiliation

Lelek-Borkowska, U. : AGH University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland ; Gruszka, M. : WMK S.A., Senatorska 1, 30-106 Krakow, Poland ; Banaś, J. : AGH University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland

Authors

Keywords

materials ; Water pipelines ; corrosion ; Cathodic protection

Divisions of PAS

Nauki Techniczne

Coverage

59-64

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Zimoch, I. (2008). Reliability Analysis of Water Distribution Subsystem. Journal of KONBiN. 7(4), 307-326.
[2] Jażdżewska, A., Gruszka, M., Mazur, R., Orlikowski, J. & Banaś, J. (2020). Determination of the effect of environmental factors on the corrosion of water distribution system based on analysis of on-line corrosion monitoring results. Archives of Metallurgy and Materials. 65(1), 109-116.
[3] Orlikowski, J., Zielinski, A., Darowicki, K., Krakowiak, S., Zakowski, K., Slepski, P., Jazdzewska, A., Gruszka, M. & J. Banas (2016). Research on causes of corrosion in the municipal water supply system. Case Studies in Construction Materials. 4, 108-115.
[4] Zakowski, K., Darowicki, K., Orlikowski, J., Jazdzewska, A., Krakowiak, S., Gruszka, M., & Banas, J. (2016). Electrolytic corrosion of water pipeline system in the remote distance from stray currents - Case study. Case Studies in Construction Materials. 4, 116-124.
[5] Jazdzewska, A., Darowicki, K., Orlikowski, J., Jazdzewska, A., Krakowiak, S., Zakowski, K., Gruszka, M., & Banas, J. (2016). Critical analysis of laboratory measurements and monitoring system of water-pipe network corrosion-case study. Case Studies in Construction Materials. 4, 102-107.
[6] Loewenthal, R.E., Morrison, I. & Wentzel, M.C. (2004). Control of corrosion and aggression in drinking water systems. Water Science and Technology. 49(2), 9-18. DOI: https://doi.org/10.2166/wst.2004.0075
[7] Booth, G.H., Cooper, A.W., Cooper, P.M. & Wakerley, D.S. (1967). Criteria of Soil Aggressiveness Towards Buried Metals. I. Experimental Methods. British Corrosion Journal. 2(3), 104-108. DOI: https://doi.org/10.1179/000705967798326957
[8] Bertolini, L., Carsana, M. & Pedeferri, P. (2007). Corrosion behaviour of steel in concrete in the presence of stray current. Corrosion Science. 49(3), 1056-1068. DOI: https://doi.org/10.1016/j.corsci.2006.05.048
[9] Chen, Z., Koleva D. & van Breugel, K. (2017). A review on stray current-induced steel corrosion in infrastructure. Corrosion Reviews. 35(6), 397-423. DOI: https://doi.org/10.1515/corrrev-2017-0009
[10] Cui, G., Li, ZL., Yang, C. & Wang, M. (2016). The influence of DC stray current on pipeline corrosion. Petroleum Science. 13(1), 135-145. DOI: https://doi.org/10.1007/s12182-015-0064-3
[11] Memon, M. (2013). Understanding Stray Current Mitigation, Testing and Maintenance on DC Powered Rail Transit Systems. In Proceedings of the 2013 Joint Rail Conference. 2013 Joint Rail Conference, April 15-18, 2013. Knoxville, Tennessee, USA: ASME.
[12] Zhu, Q., Cao, A., Zaifend, W., Song, J. & Shengli, C. (2011). Stray current corrosion in buried pipeline. Anti-Corrosion Methods and Materials. 58(5), 234-237. DOI: https://doi.org/10.1108/00035591111167695
[13] M. Ormellese & A. Brenna (2017). Cathodic Protection and Prevention: Principles, Applications and Monitoring. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.
[14] Peng, P., Zeng, X., Leng, Y., Yu, K. & Ni, Y. (2020). A New On-line Monitoring Method for Stray Current of DC Metro System. IEEJ Transactions on Electrical and Electronic Engineering. 15(10), 1482-1492.
[15] Yang, L. (2008). Techniques for Corrosion Monitoring. (2nd Ed.). USA: Woodhead Publishing.
[16] Banaś, J., Mazurkiewicz, B., Solarski W., Lelek-Borkowska, U. (2018). Development of the optimal corrosion monitoring system for inner surface of production tubing. In: J. Lubas (Ed.), Development of optimal concepts for the development of unconventional deposits (pp. 78-158). Kraków: Instytut Nafty i Gazu. (in polish)
[17] Scully, J.R. (2000). Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. Corrosion. 56(2), 199-218.
[18] Yang, L., Pan, Y., Dunn, D.S. & Sridhar, N. (2005). RealTime Monitoring of Carbon Steel Corrosion in Crude Oil and Brine Mixtures using Coupled Multielectrode Sensors. In Corrosion 2005, April 2005 (05293). Houston, Texas.
[19] A.S. G01.05, ASTM G1 - 03(2017)e1 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM, 2017, pp. 9.
[20] E.S.E. 12954:2019, General principles of cathodic protection of buried or immersed onshore metallic structures, CEN, 2019, pp. 44.
[21] E.S.E. 50162:2004, Protection against corrosion by stray current from direct current systems, CEN, 2004, pp. 44.
[22] Evitts, R.W. & Kennell, G.F. (2018). Chapter 15 - Cathodic Protection. In M. Kutz (Edt.), Handbook of Environmental Degradation of Materials (3rd Ed.) (pp. 301-321). UK, USA: William Andrew Publishing.
[23] Peabody, A.W. (2018). Control of Pipeline Corrosion. NACE E-Book
[24] Riskin, J. (2008). Chapter 2 - Corrosion and Protection of Underground and Underwater Structures Attacked by Stray Currents. In: J. Riskin (Edt.), Electrocorrosion and Protection of Metals (pp. 23-35). Amsterdam: Elsevier.

Date

2021.09.20

Type

Article

Identifier

DOI: 10.24425/afe.2021.138666
×