Details

Title

Creep Behaviors at 275 °C for Aluminum-Matrix Nano-composite under Different Stress Levels

Journal title

Archives of Foundry Engineering

Yearbook

2021

Volume

vo. 21

Issue

No 3

Authors

Affiliation

Azadi, M. : Faculty of Mechanical Engineering, Semnan University, Iran ; Behmanesh, A. : Faculty of Mechanical Engineering, Semnan University, Iran ; Aroo, H. : Faculty of Mechanical Engineering, Semnan University, Iran

Keywords

creep ; aluminum alloy ; Nano-composite ; nanoparticles ; regression model

Divisions of PAS

Nauki Techniczne

Coverage

81-89

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Ishikawa, K., Okuda, H. & Kobayashi, Y. (1997). Creep behaviors of highly pure aluminum at lower temperatures. Materials Science and Engineering A. 234-236, 154-156.
[2] Ishikawa, K. & Kobayashi, Y. (2004). Creep and rupture behavior of a commercial aluminum-magnesium alloy A5083 at constant applied stress. Materials Science and Engineering A, 387-389, 613-617.
[3] Dobes, F. & Milicka, K. (2004). Comparison of thermally activated overcoming of barriers in creep of aluminum and its solid solutions. Materials Science and Engineering A. 387-389, 595-598.
[4] Requena, G. & Degischer, H.P. (2006). Creep behavior of unreinforced and short fiber reinforced AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 420, 265-275.
[5] Li, L.T., Lin, Y.C., Zhou, H.M. & Jiang, Y.Q. (2013). Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Computational Materials Science. 73, 72-78.
[6] Fernandez-Gutierrez, R. & Requena, G.C. (2014). The effect of spheroidization heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 598, 147-153.
[7] Zhang, Q., Zhang, W. & Liu, Y. (2015). Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109. Materials Science and Engineering A. 628, 340-349.
[8] Wang, Q., Zhang, L., Xu, Y., Liu, C., Zhao, X., Xu, L., Yang,Y. & Cia, Y. (2020). Creep aging behavior of retrogression and re-aged 7150 aluminum alloy. Transactions of Nonferrous Metals Society of China. 30(10), 2599-2612.
[9] Ahn, C., Jo, I., Ji, C., Cho, S., Mishra, B. & Lee, E. (2020). Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy. Materials Characterization. 167, 110495.
[10] Zhang, M., Lewis, R.J. & Gibeling, J.C. (2021). Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy. Materials Science and Engineering A. 805, 140796.
[11] Golshan, A.M.A., Aroo, H. & Azadi, M. (2021). Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading. Applied Physics A. 127, 48.
[12] Pal, K., Navin, K. & Kurchania, R. (2020). Study of structural and mechanical behavior of Al-ZrO2 metal matrix nano-composites prepared by powder metallurgy method. Materials today: Proceeding. 26(Part 2), 2714-2719.
[13] Shuvho, M.B.A. Chowdhury, M.A., Kchaou, M., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum-based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442.
[14] Azadi, M. & Aroo, H. (2019).Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Materials Research Express. 6, 115020.
[15] Cadek, J., Oikawa, H. & Gustek, V. (1995).Threshold creep behavior of discontinuous aluminum and aluminum alloy matrix composites: an overview. Materials Science and Engineering A. 190, 9-23.
[16] Spigarelli, S. & Paoletti, C. (2018). A new model for the description of creep behavior of aluminum-based composites reinforced with nano-sized particles. Composites Part A. 112, 346- 355.
[17] Gupta, R. & Daniel, B.S.S.(2018). Impression creep behavior of ultrasonically processed in-situ Al3Ti reinforced aluminum composite. Materials Science and Engineering A. 733, 257-266.
[18] Gonga, D., Jianga, L., Guanc, J., Liua, K., Yua, Z. & Wua, G.(2020). Stable second phase: the key to high-temperature creep performance of particle reinforced aluminum matrix composite. Materials Science and Engineering A. 770, 138551.
[19] Zhao, Q., Zhang, H., Zhang, X., Qiu, F. & Jiang, Q. (2018). Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation. Materials Science and Engineering A. 718, 305-310.
[20] Bhoi, N., Singh, H. & Pratap, S. (2020). Developments in the aluminum metal matrix composites reinforced by micro/nano-particles - A review. Journal of Composite Materials. 54(6), 813- 833.
[21] Azadi, M., Zomorodipour, M. & Fereidoon, A. (2021). Study of effect of loading rate on tensile properties of aluminum alloy and aluminum matrix nano-composite. Journal of Mechanical Engineering. 51(1), 9-18.
[22] Bhowmik, A., Dey, D. & Biswas, A. (2021). Characteristics study of physical, mechanical and tribological behavior of SiC/TiB2 dispersed aluminum matrix composite. Silicon. 06 January. DOI: https://doi.org/10.1007/s12633-020-00923-2.
[23] Zolfaghari, M., Azadi, M. & Azadi, M. (2021). Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys, International Journal of Metalcasting. 15, 152-168.
[24] Balachandran, M., Devanathan, S., Muraleekrishnan, R. & Bhagawan, S.S. (2012). Optimizing properties of nano-clay-nitrile rubber (NBR) composites using face central composite design. Materials and Design. 35, 854-862.
[25] Kumar, V.A., Kumar, V.V.V., Menon, G.S., Bimaldev, S., Sankar, M., Shankar, K.V. & Balachandran, M. (2020). Analyzing the effect of B4C/Al2O3 on the wear behavior of Al-6.6Si-0.4Mg alloy using response surface methodology, International Journal of Surface Engineering and Interdisciplinary Materials Science. 8(2), 66-79.
[26] Sreedev, E.P., Govind, H.K., Raj, A., Adithyan, P.S., Narayan, H.A., Shankar, K.V. & Balachandran, M. (2020). Determining the significance of cobalt addition on the wear characteristics of Al-6.6Si-0.4Mg hypoeutectic alloy using design of experiment. Tribology in Industry. 42(2), 299-309.
[27] Shankar, K.V., Balachandran, M., Pillai, B.S., Krishnanunni, R.S., Harikrishnan, N.S., Harinarayanan, A.R. & Kumar, V.S. (2021). Influence of T6 heat treatment analysis on the tribological behavior of cast Al-12.2Si-0.3Mg-0.2Sr alloy using response surface methodology. Journal of Bio- and Tribo-Corrosion. 7(3), 96. [28] Anilkumar, V., Shankar, K.V., Balachandran, M., Joseph, J., Nived, S., Jayanandan, J., Jayagopan, J. & Surya Balaji, U.S. (2021). Impact of heat treatment analysis on the wear behavior of Al-14.2Si-0.3Mg-TiC composite using response surface methodology. Tribology in Industry. DOI: 10.24874/ti.988.10.20.04.
[29] Jiang, X., Zhang, Y., Yi, D., Wang, H., Deng, X. & Wang, B. (2017). Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables. Materials Characterization. 130, 181-187.
[30] Azadi, M., Safarloo, S., Loghman, F., Rasouli, R. Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles. In AIP Conference Proceedings, 1920, (2018), 020027. DOI: 10.1063/1.5018959
[31] Khisheh, S., Khalili, K., Azadi, M. & Zaker Hendouabadi, V. (2021). Influences of roughness and heat treatment on high-cycle bending fatigue properties of A380 aluminum alloy under stress-controlled cyclic loading. Materials Chemistry and Physics. 264, 124475.
[32] Rashnoo, K., Sharifi, M.J., Azadi, M. & Azadi, M. (2020). Influences of reinforcement and displacement rate on microstructure, mechanical properties and fracture behaviors of cylinder-head aluminum alloy. Materials Chemistry and Physics. 255, 123441.



Date

2021.09.28

Type

Article

Identifier

DOI: 10.24425/afe.2021.138669
×