Details

Title

Structural Characterization of Rapidly Solidified Al71Ni24Fe5 Alloy

Journal title

Archives of Foundry Engineering

Yearbook

2021

Volume

vo. 21

Issue

No 3

Authors

Affiliation

Młynarek, K. : Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland ; Czeppe, T. : Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta 5 St., 30-059 Kraków, Poland ; Babilas, R. : Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland

Keywords

Solidification process ; Mechanism of crystallization ; rapid solidification ; Quasicrystalline structure ; aluminium alloys

Divisions of PAS

Nauki Techniczne

Coverage

90-95

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Tsai, A.P., Inoue, A. & Masumoto, T. (1989). New decagonal Al–Ni–Fe and Al–Ni–Co alloys prepared by liquid quenching. Materials Transactions, JIM. 30(2), 150-154. DOI: 10.2320/matertrans1989.30.150.
[2] Lin, Y., Mao, S., Yan, Z., Zhang, Y. & Wang, L. (2017). The enhanced microhardness in a rapidly solidified Al alloy. Material Science and Engneering: A. 692, 182-191. DOI: 10.1016/j.msea.2017.03.052.
[3] Kula, A., Blaz, L. & Lobry, P. (2016) Structure and properties studies of rapidly solidified Al-Mn alloys. Key Engineering Materials. 682, 199-204. DOI: 10.4028/www.scientific.net/KEM.682.199.
[4] Lavernia, E.J. & Srivatsan, T.S. (2010). The rapid solidification processing of materials: Science, principles, technology, advances, and applications. Journal of Materials Science. 45, 287-325. DOI: 10.1007/s10853-009-3995-5.
[5] Sukhova, O.V., Polonskyy, V.A. & Ustinovа, K.V. (2017). Structure formation and corrosion behaviour of quasicrystalline Al-Ni-Fe alloys. Physics and Chemistry of Solidstate. 18(2), 222-227. DOI: 10.15330/pcss.18.2.222-227.
[6] Kridli, G.T., Friedman, P.A. & Boileau, J.M. (2010). Manufacturing processes for light alloys. In P.K. Mallick (Eds.), Materials, Design and Manufacturing for Lightweight Vehicles (pp. 235-274). Woodhead Publishing.
[7] Bonollo, F., Gramegna, N. & Timelli, G. (2015). High-pressure die-casting: Contradictions and challenges. JOM: The Journal of the Minerals, Metals & Materials Society. 67, 901-908. DOI: 10.1007/s11837-015-1333-8.
[8] Naglič, I., Samardžija, Z., Delijić, K., Kobe, S., Dubois, J.M., Leskovar, B. & Markoli, B. (2017). Metastable quasicrystals in Al–Mn alloys containing copper, magnesium and silicon. Journal of Material Science. 52, 13657-13668. DOI: 10.1007/s10853-017-1477-8.
[9] He, Z., Ma, H., Li, H., Li, X. & Ma, X. (2016). New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy. Scientific Reports. 6, 22337. DOI: 10.1038/srep22337.
[10] Kühn, U., Eckert, J., Mattern, N. & Schultz, L. As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Applied Physics Letter. 77, 3176-3178. DOI: 10.1063/1.1326036.
[11] Avar, B., Gogebakan, M., Yilmaz, F. (2008). Characterization of the icosahedral quasicrystalline phase in rapidly solidified Al-Cu-Fe alloys. Zeitschrift Für Kristallographie- Crystalline Materials. 223, 731-734. DOI: 10.1524/zkri.2008.1077.
[12] Surowiec, M.R. (2017). Quasicrystals. Warsaw: Polish Scientific Publishers PWN. (in Polish) [13] Ishimasa, T. (2016). Mysteries of icosahedral quasicrystals: How are the atoms arranged? IUCrJ. 3, 230-231. DOI: 10.1107/S2052252516009842.
[14] Pedrazzini, S., Galano, M., Audebert, F., Siegkas, P., Gerlach, R., Tagarielli, V.L. & Smith, G.D.W. (2019). High strain rate behaviour of nano-quasicrystalline Al93Fe3Cr2Ti2 alloy and composites. Materials Science and Engineering: A. 764, 138201. DOI: 10.1016/j.msea.2019.138201.
[15] Shadangi, Y., Shivam, V., Singh, M.K., Chattopadhyay, K., Basu, J. & Mukhopadhyay, N.K. (2019). Synthesis and characterization of Sn reinforced Al-Cu-Fe quasicrystalline matrix nanocomposite by mechanical milling. Journal of Alloys and Compounds. 797, 1280-1287. DOI: 10.1016/j.jallcom.2019.05.128.
[16] Audebert, F., Prima, F., Galano, M., Tomut, M., Warren, P.J., Stone, I.C. & Cantor, B. (2002). Structural characterisation and mechanical properties of nanocomposite Al-based alloys. Materials Transactions. 43, 2017-2025. DOI: 10.2320/matertrans.43.2017.
[17] Inoue, A. & Kimura, H. (2000). High-strength aluminum alloys containing nanoquasicrystalline particles. Materials Science and Engineering: A. 286, 1-10. DOI: 10.1016/S0921-5093(00)00656-0.
[18] Li, F.C., Liu, T., Zhang, J.Y., Shuang, S., Wang, Q., Wang, A.D., Wang, J.G. & Yang, Y. (2019). Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Materials Today Advances. 4, 100027. DOI: 10.1016/j.mtadv.2019.100027.
[19] Qiang, J., Wang, D., Bao, C., Wang, Y., Xu, W. & Song, M. (2001). Formation rule for Al-based ternary quasi-crystals : Example of Al–Ni– Fe decagonal phase. Journal of Materials Reserach. 16(9) 2653-2660. DOI: 10.1557/JMR.2001.0364.
[20] Audebert, F. (2005). Amorphous and nanostructured Al-Fe and Al-Ni based alloys. In Idzikowski B., Švec P., Miglierini M. (Eds.) Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors. NATO Science Series (Series II: Mathematics, Physics and Chemistry). Dordrecht: Springer.
[21] Milman, Y.V., Sirko, A.I., Iefimov, M.O., Niekov, O.D., Sharovsky, A.O. & Zacharova, N.P. (2006). High strength aluminum alloys reinforced by nanosize quasicrystalline particles for elevated temperature application. High Temperature Materials and Processes. 25(1-2), 19-29. DOI: 10.1515/HTMP.2006.25.1-2.19.
[22] Yadav, T.P., Mukhopadhyay, N.K., Tiwari, R.S. & Srivastava, O.N. (2007). Studies on Al-Ni-Fe decagonal quasicrystalline alloy prepared by mechanical alloying, Philosophical Magazine. 87(18-21), 3117-3125. DOI: 10.1080/14786430701355208.
[23] Babilas, R., Młynarek, K., Łoński, W., Lis, M., Łukowiec, D., Kądziołka-Gaweł, M., Warski, T., Radoń, A. (2021). Analysis of thermodynamic parameters for designing quasicrystalline Al-Ni-Fe alloys with enhanced corrosion resistance. Journal of Alloys and Compounds. 868, 159241. DOI: 10.1016/j.jallcom.2021.159241.
[24] Grushko, B., Lemmerz, U., Fischer, K. & Freiburg, C. (1996). The low-temperature instability of the decagonal phase in Al-Ni-Fe. Physica Status Solidi (a). 155, 17-30. DOI: 10.1002/pssa.2211550103.
[25] Raghavan, V. (2009). Al-Fe-Ni (Aluminum-Iron-Nickel). Journal of Phase Equilibria and Diffusion. 30(4), 85-88. DOI: 10.1007/s11669-008-9452-3.
[26] Konieczny, M., Mola, R., Thomas, P. & Kopcial, M. (2011). Processing, microstructure and properties of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Archives of Metallurgy and Materials. 56(3), 693-702. DOI: 10.2478/v10172-011-0076-y.
[27] Čelko, L., Klakurková, L. & Švejcar, J. (2010). Diffusion in Al-Ni and Al-NiCr interfaces at moderate temperatures. Defect and Diffusion Forum. 297-301, 771-777. DOI: 10.4028/www.scientific.net/DDF.297-301.771.
[28] Titran, R.H., Vedula, K.M. & Anderson, G.G. (1984). High temperature properties of equialomic FeAl with ternary additions. MRS Proceedings. 39(309), 1471-1478. DOI: 10.1557/PROC-39-309.

Date

2021.09.28

Type

Article

Identifier

DOI: 10.24425/afe.2021.138670
×