Szczegóły

Tytuł artykułu

Plasma Coatings on Aluminium-Silicon Alloy Surfaces

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

2021

Wolumin

vo. 21

Numer

No 3

Afiliacje

Długosz, P. : Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str. 30-418 Cracow, Poland ; Garbacz-Klempka, A. : AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, Poland ; Piwowońska, J. : Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str. 30-418 Cracow, Poland ; Darłak, P. : AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland ; Młynarczyk, M. : AGH University of Science and Technology, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Kraków, Poland

Autorzy

Słowa kluczowe

Plasma electrolytic oxidation ; Al-Si alloy ; anodizing

Wydział PAN

Nauki Techniczne

Zakres

96-101

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Bibliografia

[1] Famiyeh, L. & Huang, H. (2019). Plasma electrolytic oxidation coatings on aluminum alloys: microstructures, properties, and applications. Modern Concepts in Material Science. 2(1), 1-13. DOI: 10.33552/MCMS.2019.02.000526.
[2] Sieber, M., Simchen, F., Morgenstern, R., Scharf, I. & Lampke, T. (2018). Plasma electrolytic oxidation of high-strength aluminium alloys-substrate effect on wear and corrosion performance. Metals. 8(5), 356. DOI: 10.3390/met8050356.
[3] Matykina, E., Arrabal, R., Mohedano, M., Mingo, B., Gonzalez, J., Pardo, A. & Merino, M.C. (2017). Recent advances in energy efficient PEO processing of aluminium alloys. Transactions of Nonferrous Metals Society of China. 27(7) 1439-1454. DOI: 10.1016/S1003-6326(17)60166-3.
[4] Agureev, L., Savushkina, S., Ashmarin, A., Borisov, A., Apelfeld, A., Anikin, K., Tkachenko, N., Gerasimov, M., Shcherbakov, A., Ignatenko, V. & Bogdashkina, N. (2018). Study of plasma electrolytic oxidation coatings on aluminum composites. Metals. 8(6), 459. DOI: 10.3390/met8060459.
[5] Lakshmikanthan, A., Bontha, S., Krishna, M., Praveennath, G.K. & Ramprabhu, T. (2019). Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. Journal of Alloys and Compounds. 786, 570-580. DOI: 10.1016/j.jallcom.2019.01.382.
[6] Lakshmikanthan, A., Prabhu, T.R., Babu, U.S., Koppad, P.G., Gupta, M., Krishna, M. & Bontha, S. (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology. 9(3), 6434-6452. DOI: 10.1016/j.jmrt.2020.04.027.
[7] Rogov, A., Lyu, H., Matthews, A. & Yerokhin, A. (2020). AC plasma electrolytic oxidation of additively manufactured and cast AlSi12 alloys. Surface and Coatings Technology, 399, 126116. DOI: 10.1016/j.surfcoat.2020.126116.
[8] Li, K., Li, W., Zhang, G., Zhu, W., Zheng, F., Zhang, D. & Wang, M. (2019). Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. Journal of Alloys and Compounds. 790, 650-656. DOI: 10.1016/j.jallcom.2019.03.217.
[9] Gencer, Y., Tarakci, M., Gule, A.E. & Oter C.Z. (2014). Plasma Electrolytic Oxidation of Binary Al-Sn Alloys. Acta Physica Polonica A. 125(2), 659-663. DOI: 10.12693/APhysPolA.125.659.
[10] Moszczyński, P. & Trzaska, M. (2011). Shaping of oxide layers on the aluminum surface by plasma electrochemical oxidation. Elektronika: konstrukcje, technologie, zastosowania. 52(12), 96-99. (in Polish).
[11] He, J., Cai, Q.Z., Luo, H.H., Yu, L. & Wei, B.K. (2009). Influence of silicon on growth process of plasma electrolytic oxidation coating on Al–Si alloy. Journal of Alloys and Compounds. 471(1-2), 395-399. DOI: 10.1016/ j.jallcom.2008.03.114.
[12] Blawert, C., Karpushenkov, S.A., Serdechnovaa, M., Karpushenkava, L.S. & Zheludkevicha, M.L. (2020). Plasma electrolytic oxidation of zinc alloy in a phosphate-aluminate electrolyte. Applied Surface Science. 505, 144552, DOI: 10.1016/j.apsusc.2019.144552.
[13] Dehnavi, V. (2014). Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation. A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy The School of Graduate and Postdoctoral Studies, The University of Western Ontario London, Ontario, Canada.
[14] Zhang, Y., Xu, H., Yang, Y. (2007). Study on the optimization of pulse frequency in the micro arc oxidation of aluminum alloys. Proceedings of Vacuum Metallurgy and Surface Engineering. Beijing: Electronics Industry Press. 33−40.
[15] Habazaki, H., Onodera, T., Fushimi, K., Konno, H. & Toyotake, K. (2007). Spark anodizing of β-Ti alloy for wear resistant coating. Surface and Coatings Technology. 201(21), 8730-8737. DOI: 10.1016/j.surfcoat.2006.05.041.
[16] Kurze, P., Krysmann, W. & Schneider, H.G. (2006). Application fields of ANOF layers and composites. Crystal Research and Technology. 21(12), 1603-1609. DOI: 10.1002/crat.2170211224.
[17] Butyagin, P.I., Khorkhryakov, Y.V. & Mamaev, A.I. (2003). Microplasma systems for creating coatings on aluminium alloys. Materials Letters. 57(11), 1748-1751. DOI: 10.1016/S0167-577X(02)01062-5.
[18] Sonova, A.I. & Terleeva, O.P. (2008). Morphology, structure, and phase composition of microplasma coatings formed on Al−Cu−Mg alloy. Protection of Metals. 44(1), 65-75. DOI: 10.1134/S0033173208010098.
[19] Shihai, C., Jiunmin, H., Weijing, L., Suk-Bong, K. & Jung-Moo, L. (2006). Study on wear behavior of plasma electrolytic oxidation coatings on aluminum alloy. Rare Metals. 25(6), 141-145. DOI: 10.1016/S1001-0521(08)60069-8.
[20] Dai, L., Li, W., Zhang, G., Fu, N. & Duan, Q. (2017). Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. In IOP Conf. Series: Materials Science and Engineering, 19–21 November 2016 (167, 012063), Sanya, China: IOP Publishing Ltd. DOI: 10.1088/1757-899X/167/1/012063.
[21] Li, Q.B., Liu, C.C., Yang, W.B. & Liang, J. (2017). Growth mechanism and adhesion of PEO coatings on 2024Al alloy. Surface Engineering. 33(10), 760-766. DOI: 10.1080/02670844.2016.1200860.
[22] Ayday, A. & Durman, M. (2015). Growth characteristics of plasma electrolytic oxidation coatings on aluminum alloys. Acta Physica Polonica A. 127(4), 886-887, DOI: 10.12693/APhysPolA.127.886.
[23] Dehnavi, V., Shoesmith, D.W., Luan, B.L., Yari, M. & Liu, X.Y. & Rohani, S. (2015). Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy – The effect of the PEO process stage. Materials Chemistry and Physics. 161, 49-58. DOI: 10.1016/j.matechemphys.2015.04.058.
[24] Gębarowski, W. & Pietrzyk, S. (2012). Plasma electrolytic oxidation of aluminum process technology outline. Rudy i Metale Nieżelazne. 57(4), 237-242. (in Polish).
[25] Duanjie, L. (2014). Scratch hardness measurement using mechanical tester. Retrieved February 12, 2020, from http://nanovea.com/app-notes/scratch-hardness-measurement.pl
[26] Hussein, R.O. & Northwood, D.O. (2014). Production of anti-corrosion coatings on light alloys (Al, Mg, Ti) by plasma-electrolytic oxidation (PEO). In Mahmood Aliofkhazraei (Eds.), Developments in Corrosion Protection (pp. 201-238). London, UK: IntechOpen Limited. DOI: 10.5772/57171.
[27] Wredenberg, F. & Larsson, P.-L. (2009). Scratch testing of metals and polymers: Experiments and numerics. Wear. 266(1-2), 76-83. DOI: 10.1016/j.wear.2008.05.014.
[28] Hussein, R.O., Northwood, D.O. & Nie, X. (2012). The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. Journal of Alloys and Compounds. 541, 41-48, DOI: 10.1016/j.jallcom.2012.07.003.
[29] Matykina, E., Arrabal, R., Skeldon, P. & Thompson, G.E. (2009). Investigation of the growth processes of coatings by AC plasma electrolytic oxidation of aluminum. Electrochimica Acta. 54(27), 6767-6778.
[30] Sharift, H., Aliofkhazraei, M. & Darband, G.B. (2018). A review on adhesion strength of PEO coatings by scratch test method. Surface Review and Letters. 25(3), 1830004. DOI: 10.1142/S0218625X18300046.

Data

2021.09.28

Typ

Article

Identyfikator

DOI: 10.24425/afe.2021.138671 ; ISSN 2299-2944
×