### Details

#### Title

Evacuation by leader-follower model with bounded confidence and predictive mechanisms#### Journal title

Archives of Control Sciences#### Affiliation

Almeida, Ricardo : Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810–193 Aveiro, Portugal ; Girejko, Ewa : Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland ; Machado, Luís : Institute of Systems and Robotics, DEEC – UC, 3030-290 Coimbra, Portugal ; Machado, Luís : Department of Mathematics, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal ; Malinowska, Agnieszka B. : Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland ; Martins, Natália : Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810–193 Aveiro, Portugal#### Authors

#### Keywords

multi-agent systems ; emergency ; model predictive control ; bounded confidence#### Divisions of PAS

Nauki Techniczne#### Coverage

629-644#### Publisher

Committee of Automatic Control and Robotics PAS#### Bibliography

[1] H. Abdelgawad and B. Abdulhai: Emergency evacuation planning as a network design problem: A critical review. Transportation Letters: The International Journal of Transportation Research, 1 (2009), 41–58, DOI: 10.3328/TL.2009.01.01.41-58.[2] R. Alizadeh: A dynamic cellular automaton model for evacuation process with obstacles, Safety Science, 49(2), (2011), 315–323, DOI: 10.1016/j.ssci.2010.09.006.

[3] R. Almeida, E. Girejko, L. Machado, A.B. Malinowska, and N. Mar- tins: Application of predictive control to the Hegselmann-Krause model, Mathematical Methods in the Applied Sciences, 41(18), (2018), 9191–9202, DOI: 10.10022Fmma.5132.

[4] B. Aulbach and S. Hilger: A unified approach to continuous and discrete dynamics, ser. Colloq. Math. Soc. Janos Bolyai, vol. 53, North-Holland, Amsterdam, 1990.

[5] H. Bi and E. Gelenbe: A survey of algorithms and systems for evacuating people in confined spaces, Electronics, 2019 8(6), (2019), 711, DOI: 10.3390/electronics8060711.

[6] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis: On Krause’s multiagent consensus model with state-dependent connectivity, IEEE Transactions on Automatics Control, vol. 54(11), (2009), 2586–2597, DOI: 10.1109/TAC.2009.2031211.

[7] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis: Continuous-time average-preserving opinion dynamics with opinion-dependent communications, SIAM Journal on Control and Optimization, vol. 48(8), (2010), 5214–5240, DOI: 10.1137/090766188.

[8] M. Bohner and A. Peterson: Dynamic equations on time scales, Boston, MA: Birkhäuser Boston, 2001.

[9] R.M. Colombo and M. D. Rosini: Pedestrian flows and non-classical shocks, Mathematical Methods in the Applied Sciences, 28(13), (2005), 1553–1567, DOI: 10.1002/mma.624.

[10] E. Girejko, L. Machado, A.B. Malinowska, and N. Martins: Krause’s model of opinion dynamics on isolated time scales, Mathematical Methods in the Applied Sciences, 39 (2016), 5302–5314, DOI: 10.1002/mma.3916.

[11] R. Hegselmann and U. Krause: Opinion dynamics and bounded confidence models, analysis, and simulation, Journal of Artificial Societies and Social Simulation, 5(3), (2002), http://jasss.soc.surrey.ac.uk/5/3/2.html.

[12] D. Helbing and P. Molnar: Social force model for pedestrian dynamics, Physical Review E, 51(5), (1995), 4282–4286, DOI: 10.1103/Phys-RevE.51.4282.

[13] R. Hilscher and V. Zeidan:Weak maximum principle and accessory problem for control problems on time scales, Nonlinear Analysis, 70(9), (2009), 3209–3226, DOI: 10.1016/j.na.2008.04.025.

[14] L. Huang, S.C.Wong, M. Zhang, C.-W. Shu, andW.H.K. Lam: Revisiting Hughes’ dynamics continuum model for pedestrian flow and the development of an efficient solution algorithm, Transportation Research Part B: Methodological, 43(1), (2009), 127–141, DOI: 10.1016/j.trb.2008.06.003.

[15] R.L. Hughes: A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36(6), (2002), 507–535, DOI: 10.1016/S0191-2615(01)00015-7.

[16] R. Lohner: On the modeling of pedestrian motion, Applied Mathematical Modeling, 34(2), (2010), 366–382, DOI: 10.1016/j.apm.2009.04.017.

[17] S.J. Qin and T.A. Badgwell: An Overview of Nonlinear Model Predictive Control Applications, Allgöwer F., Zheng A. ed., ser. Nonlinear Model Predictive Control. Progress in Systems and Control Theory. Birkhäuser, Basel, 2000, vol. 26, pp. 369–392.

[18] S. Wojnar, T. Poloni, P. Šimoncic, B. Rohal’-Ilkiv, M. Honek (and) J. Csambál: Real-time implementation of multiple model based predictive control strategy to air/fuel ratio of a gasoline engine. Archives of Control Sciences, 23(1), (2013), 93–106.

[19] S. Daniar, M. Shiroei and R. Aazami: Multivariable predictive control considering time delay for load-frequency control in multi-area power systems. Archives of Control Sciences, 26(4), (2016), 527–549, DOI: 10.1515/acsc-2016-0029.

[20] Y. Yang, D.V. Dimarogonas, and X. Hu: Optimal leader-follower control for crowd evacuation, Proc. 52nd IEEE Conf. Decision Control (CDC), (2013), 2769–2774, DOI: 10.1109/CDC.2013.6760302.

[21] Z. Zainuddin and M. Shuaib: Modification of the decision-making capability in the social force model for the evacuation process, Transport Theory and Statistical Physics, 39(1), (2011), 47–70, DOI: 10.1080/00411450.2010.529979.

[22] H.-T. Zhang, M.Z. Chen, G.-B. Stan, and T. Zhou: Ultrafast consensus via predictive mechanisms, Europhysics Letters, 83, (2008), no. 40003.

[23] H.-T. Zhang, M.Z. Chen, G.-B. Stan, T. Zhou, and J.M.Maciejowski: Collective behaviour coordination with predictive mechanisms, IEEE Circuits Systems Magazine, 8, (2008) 67–85, DOI: 10.1109/MCAS.2008.928446.

[24] L. Zhang, J. Wang, and Q. Shi: Multi-agent based modeling and simulating for evacuation process in stadium, Journal of Systems Science and Complexity, 27(3), (2014), 430–444, DOI: 10.1007/s11424-014-3029-5.

[25] Y. Zheng, B. Jia, X.-G. Li, and N. Zhu: Evacuation dynamics with fire spreading based on cellular automaton, Physica A: Statistical Mechanics and Its Applications, 390(18-19), (2011), 3147–3156, DOI: 10.1016/j.physa.2011.04.011.