Details

Title

Tripeptidyl peptidase I activity in porcine lumbar spinal ganglia – a histochemical study

Journal title

Polish Journal of Veterinary Sciences

Yearbook

2021

Volume

vol. 24

Issue

No 3

Authors

Affiliation

Vodenicharov, A.P. : Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine Trakia University of Stara Zagora, Bulgaria ; Dimitrova, M. : Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Science, Sofia, Bulgaria ; Tsandev, N.S. : Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine Trakia University of Stara Zagora, Bulgaria ; Stefanov, I.S. : Department of Anatomy, Faculty of Medicine, Trakia University of Stara Zagora, Student Town 6000, Bulgaria

Keywords

enzyme histochemistry ; pig ; spinal ganglia ; tripeptidyl peptidase I

Divisions of PAS

Nauki Biologiczne i Rolnicze

Coverage

409-414

Publisher

Polish Academy of Sciences Committee of Veterinary Sciences ; University of Warmia and Mazury in Olsztyn

Bibliography


Aldskogius H, Elfvin LG, Forsman CA (1986) Primary sensory afferents in the inferior mesenteric ganglion and related nerves of the guinea pig. An experimental study with anterogradely transported wheat germ agglutinin- -horseradish peroxidase conjugate. J Auton Nerv Syst 15: 179-190.
Atanassova D, Lazarov N (2015) Histochemical demonstration of tripeptidyl aminopeptidase I in the rat carotid body. Acta Histochem 117: 219-222.
Bond M, Holthaus S-M, Tammen I, Tear G, Russell C (2013) Use of model organisms for the study of neuronal ceroid lipofuscinosis. Bio-chim Biophys Acta 1832: 1842-1865.
Bossowska A, Crayton R, Radziszewski P, Kmiec Z, Majewski M (2009) Distribution and neurochemical characterization of sensory dorsal root ganglia neurons supplying porcine urinary bladder. J Physiol Pharmacol 60 (Suppl 4): 77-81.
Cesta MF, Mozzachio K, Little PB, Olby NJ, Sills RC, Brown TT (2006) Neuronal ceroid lipofuscinosis in a Vietnamese pot-bellied pig (Sus scrofa). Vet Pathol 43: 556-560.
Cowan P J, Cooper DK, d’Apice A J (2014) Kidney xenotransplantation. Kidney Int 85: 265–275.
Dikov A, Dimitrova M, Ivanov I, Krieg R, Halbhub KJ (2000) Original method for the histochemical demonstration of tripeptidyl aminopep-tidase I. Cell Mol Biol 46: 1219-1225.
Dimitrova M, Ivanov I, Deleva D (2009) Distribution of tripeptidyl peptidase I activity of the rat brain and spinal cord. CR Acad Bulg Sci 62: 729 -734.
Dimitrova MB, Atanasova DY, Lazarov NE (2017a) Histochemical demonstration of tripeptidyl aminopeptidase I. In: Histochemistry of Single Molecules: Methods and Protocols. Pellicciari C, Biggiogera M (eds) Methods in molecular biology, vol. 1560, chapter 4, Humana Press, Springer Science+Business Media, New York, LLC, pp 55-68.
Dimitrova MB, Atanasova DY, Lazarov NE (2017b) Tripeptidyl peptidase I and its role in neurodegenerative and tumor diseases. In: Chakraborti S, Dhalla NS (eds) Pathophysiological aspects of proteases, Springer Science+Business Media, New York, LLC, pp 147-160.
Esposito MF, Malayil R, Hanes M, Deer T (2019) Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med 20 (Suppl 1): S23-S30.
George D, Ahrens P, Lambert S (2018) Satellite glial cells represent a population of developmentally arrested Schwann cells. Glia 66: 1496-1506.
Gołabek AA (2006). Tripeptidyl-peptidase I – distribution, biogenesis, and mechanisms of activation. Postepy Biochem 52: 16-23.
Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V (2015) Efficacy of the porcine species in biomedical research. Fron Genet 6: 293.
Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48: 457-476.
Ivanov I, Tasheva D, Todorova R, Dimitrova M (2009) Synthesis and use of 4-peptidylhydrazido-N-hexyl-1,8-naphthalimides as fluorogenic histochemical substrates for dipeptidyl peptidase IV and tripeptidyl peptidase I. Eur J Med Chem 44: 384-392.
Kida E, Gołabek AA, Walus M, Wujek P, Kaczmarski W, Wisniewski K (2001) Distribution of trypeptidyl peptidase I in human tissues under normal and pathological conditions. J Neuropathol Exp Neurol 60: 280-292.
Koike M, Shibata M, Ohsawa Y, Kametaka S, Waguri S, Kominami E, Uchiyama Y (2002) The expression of trypeptidyl peptidase I in vari-ous tissues of rats and mice. Arch Histol Cytol 65: 219-232.
Kozłowska A, Mikołajczyk A, Majewski M (2018a) Distribution and neurochemistry of porcine urinary bladder-projecting sensory neurons in subdomains of the dorsal root ganglia: A quantitative analysis. Ann Anat 216: 36-51.
Kozłowska A, Mikołajczyk A, Majewski M (2018b) Neurochemical difference between somato- and viscero-projecting sensory neurons in the pig. J Chem Neuroanat 94: 8-20.
Kurachi Y, Oka A, Itoh M, Mizuguchi M., Hayashi M., Takashima S (2001) Distribution and develop- ment of CLN2 protein, the late-infantile neuronal ceroid lipofuscinosis gene product. Acta Neuropathol 102: 20-26.
Kuzmuk K N, Schook LB (2011) Pigs as model in Biomedical Science. In: Rothschild MF, Ruvinsky A (eds) The genetic of the pig. CAB International, pp. 426-444.
Lunney J K (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3: 179-184
Lelovas PP, Kostomitsopoulos NG, Xanthos TT (2014) A Comparative Anatomic and Physiologic Overview of the Porcine Heart. J Am Assoc Lab Anim Sci 53: 432-438.
Matthews MR, Cuello AC (1982) Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons. Proc Natl Acad Sci 79: 1668-1672.
McDonald JK, Hoisington AR, Eisenhauer DA (1985) Partial purification and characterization of an ovarian tripeptidyl peptidase: a lysosomal exopeptidase that sequentially releases collagen-related (Gly-Pro-X) triplets. Biochem Biophys Res Commun 126: 63-71.
Nascimento AI, Mar FM, Sousa MM (2018) The intriquing nature of dorsal root ganglion neurons: Linking structure with polarity and func-tion. Prog Neurobiol 168: 86-103.
Pannese E (1981) The satellite cells of sensory ganglia. Adv Anat Embryol Cell Biol 65: 1-111.
Pannese E (2002) Perikaryal surface specializations of neurons in sensory ganglia. Int Rev Cytol 220: 1-34.
Pannese E (2010) The structure of perineuronal sheath of satellite glial cells (SGCs) in sensory ganglia. Neuron Glia Biology 6 (1): 3-10.
Pidsudko Z (2014) Immunohistochemical characteristics and distribution of sensory dorsal root Ganglia neurons supplying the urinary bladder in male pig. J Mol Neurosci 52: 71-81.
Russo D, Clavenzani P, Sorteni C, Minelli LB, Botti M, Gazza F, Panu R, Ragionieri L, Chiocchetti R (2013) Neurochemical features of boar lumbosacral dorsal root ganglion neurons and characterization of sensory neurons innervating the urinary bladder trigone. J Comp Neurol 521: 342-366.
Stefanov IS, Vodenicharov AP, Tsandev NS (2017) Localization of nicotinamide adenine dinucleotide phosphate diaphorase containing neu-rons and mast cells in porcine lumbar spinal ganglia. CR Acad Bulg Sci 70: 1473-1480.
Steinfeld R, Heim P, von Gregory H, Meyer K, Ullrich K, Goebel HH, Kohlschutter A (2002) Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet 112: 347-354.
Summerfield A, Meurens F, Ricklin ME (2015) The immunology of the porcine skin and its value as a model for human skin. Mol Immunol 66: 14-21.

Date

2021.09.30

Type

Article

Identifier

DOI: 10.24425/pjvs.2021.138732
×