Comparison of Electrochemical Micromachining Performance using TOPSIS, VIKOR and GRA for Magnetic field and UV rays heated Electrolyte

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences









electrolyte ; magnet ; UV heating ; TOPSIS ; VIKOR ; GRA

Divisions of PAS

Nauki Techniczne




  1. X. Wu, L. Li, N. He, M. Zhao, and Z. Zhan, “Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper,” Int. J. Adv. Manuf. Technol., vol. 79, pp. 321–327, 2015, doi: 10.1007/s00170-015-6828-5.
  2.  R. Thanigaivelan, R.M. Arunachalam, and P. Drukpa, “Drilling of micro-holes on copper using electrochemical micromachining,” Int. J. Adv. Manuf. Technol. vol. 61, pp.1185–1190, 2012, doi: 10.1007/s00170-012-4093-4.
  3.  S.S. Anasane and B. Bhattacharyya, “Electrochemical Micromachining of Titanium and Its Alloys,” in Non-traditional Micromachining Processes. Materials Forming, Machining and Tribology, G. Kibria, B. Bhattacharyya, J. Davim, Eds., Springer, Cham, 2017, pp. 337–365, doi: 10.1007/978-3-319-52009-4_9.
  4.  S. Min, D.-E. Lee, A. de Grave, C.M. De Oliveira Valente, J. Lin, and D.A. Dornfeld, “Surface and edge quality variation in precision machining of single crystal and polycrystalline materials,” Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., vol. 220, no. 4, pp. 479–487, 2006, doi: 10.1243/095440506X77599.
  5.  M. Soundarrajan and R. Thanigaivelan, “Effect of coated geometrically modified tools on performance of electrochemical micromachining,” Mater. Manuf. Processes, vol. 35, no. 7, pp. 775–782, 2020, doi: 10.1080/10426914.2020.1740252.
  6.  T. Zhang, Z. Liu, and C. Xu, “Influence of size effect on burr formation in micro cutting,” Int. J. Adv. Manuf. Technol. vol. 68, pp.1911– 1917, 2013, doi: 10.1007/s00170-013-4801-8.
  7.  S. Ao, K. Li, W. Liu, X. Qin, T. Wang, Y. Dai, and Z. Luo, “Electrochemical micromachining of NiTi shape memory alloy with ethylene glycol–NaCl electrolyte containing ethanol,” J. Manuf. Process, vol. 53, pp. 223–228, 2020, doi: 10.1016/j.jmapro.2020.02.019.
  8.  M. Soundarrajan, R. Thanigaivelan, and S. Maniraj, “Investigation on Electrochemical Micromachining (EMM) of AA-MMC Using Acidified Sodium Nitrate Electrolyte,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 367–376, doi: 10.1007/978-981-15-4739-3_30.
  9.  K. Pooranachandran, J. Deepak, P. Hariharan, and B. Mouliprasanth, “Effect of Flushing on Electrochemical Micromachining of Copper and Inconel 718 Alloy,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 61–69, doi: 10.1007/978- 981-13-1724-8_6.
  10.  Y. Pan, Z. Hou, and N. Qu, “Improvement in accuracy of micro-dimple arrays prepared by micro-electrochemical machining with high- pressure hydrostatic electrolyte,” Int. J. Adv. Manuf. Technol., vol.100, no. 5, pp.1767–1777, 2019, doi: 10.1007/s00170-018-2822-z.
  11.  M. Baoji, P. Cheng, K. Yun, and P. Yin, “Effect of magnetic field on the electrochemical machining localization,” Int. J. Adv. Manuf. Technol., vol. 102, no. 1–4, pp. 949–956, 2019, doi: 10.1007/s00170-018-3185-1.
  12.  J. VinodKumaar, R. Thanigaivelan, and V. Dharmalingam, “A Study on the Effect of Oxalic Acid Electrolyte on Stainless Steel (316L) Through Electrochemical Micro-machining,” in Advances in Industrial Automation and Smart Manufacturing, Springer 2019, pp. 93–103 2019, doi: 10.1007/978-981-32-9425-7_8.
  13.  N. Rajan, R. Thanigaivelan, and K.G. Muthurajan, “Machinability studies on an A17075 composite with varying amounts of B4C using an induction-heated electrolyte in electrochemical machining,”Mater. Tehnol., vol. 53, no. 6, pp. 873–880, 2019.
  14.  R. Thanigaivelan, R.M. Arunachalam, M. Kumar, and B.P. Dheeraj, “Performance of electrochemical micromachining of copper through infrared heated electrolyte,” Mater. Manuf. Processes, vol. 33, no. 4, pp. 383–389, 2018, doi: 10.1080/10426914.2017.1279304.
  15.  K. Jiang et al., “Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte,” Int. J. Adv. Manuf. Technol., vol. 97, no. 9–12, pp. 3565–3574, 2018, doi: 10.1007/s00170-018-2190-8.
  16.  W. Liu et al., “Electrochemical micromachining on titanium using the NaCl-containing ethylene glycol electrolyte,” J. Mater. Process. Technol., vol. 255, pp. 784–794, 2018, doi: 10.1016/j.jmatprotec.2018.01.009.
  17.  A. Malik and A. Manna, “Investigation on the laser-assisted jet electrochemical machining process for improvement in machining performance,” Int. J. Adv. Manuf. Technol., vol. 96, no. 9–12, pp. 3917–3932, 2018, doi: 10.1007/s00170-018-1846-8.
  18.  H. Zhang, S. Ao, W. Liu, Z. Luo, W. Niu, and K. Guo, “Electrochemical micro-machining of high aspect ratio micro-tools using quasi-solid electrolyte,” Int. J. Adv. Manuf. Technol., vol. 91, no. 9‒12, pp. 2965–2973, 2017, doi: 10.1007/s00170-016-9900-x.
  19.  A. Speidel, J. Mitchell-Smith, D.A. Walsh, M. Hirsch, and A. Clare, “Electrolyte jet machining of titanium alloys using novel electrolyte solutions,” Procedia CIRP, vol. 42, pp. 367‒372, 2016, doi: 10.1016/j.procir.2016.02.200.
  20.  T. Sekar, M. Arularasu, and V. Sathiyamoorthy, “Investigations on the effects ofnano-fluid in ECM of die steel,” Measurement, vol. 83, pp. 38‒43. 2016, doi: 10.1016/j.measurement.2016.01.035.
  21.  A. Mohanty, G. Talla, S. Dewangan, and S. Gangopadhyay, “Microstructural investigation and multi response optimization using Fuzzy-TOPSIS during the electrochemical machining of Inconel 825,” Int. J. Precis. Technol., vol. 5, pp. 201–216, 2015, doi: 10.1504/ IJPTECH.2015.073825.
  22.  D. Singh and R.S. Shukla, “Optimization of electrochemical micromachining and electrochemical discharge machining process parameters using firefly algorithm,” Int. J. Mechatron. Manuf. Syst., vol. 9, pp.137–59, 2016, doi: 10.1504/IJMMS.2016.076169.
  23.  A. Mehrvar, A. Basti, and A. Jamali, “Optimization of electrochemical machining process parameters: Combining response surface methodology and differential evolution algorithm,” Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng., vol. 231, pp.1114–1126, 2017, doi: 10.1177/0954408916656387.
  24.  O.V. Mythreyi, P. Hariharan, and S. Gowri, “Multi-objective optimization of electrochemical micro drilling of titanium alloy,” Int. J. Precis. Technol., vol. 7, pp.188‒204, 2017, doi: 10.1504/IJPTECH.2017.090775.
  25.  M. Soundarrajan and R. Thanigaivelan, “Investigation of Electrochemical Micromachining Process Using Ultrasonic Heated Electrolyte,” in Advances in Micro and Nano Manufacturing and Surface Engineering, M. Shunmugam, M. Kanthababu, Eds., Springer, 2019, pp. 423–434, doi: 10.1007/978-981-32-9425-7_38.
  26.  M. Soundarrajan and R. Thanigaivelan, “Investigation on electrochemical micromachining (ECMM) of copper inorganic material using UV heated electrolyte,” Russ. J. Appl. Chem., vol. 91, no. 11, pp. 1805–1813, 2018, doi: 10.1134/S1070427218110101.
  27.  K. Motoyama, T. Umemoto, H. Shang, and T. Hasegawa “Effects of magnetic field and far-ultraviolet radiation on the structures of bright-rimmed clouds,” Astrophys. J., vol. 766, no 1, p. 50. 2013, doi: 10.1088/0004-637X/766/1/50.
  28.  T. Mythili and R. Thanigaivelan, “Optimization of wire EDM process parameters on Al6061/Al2O3 composite and its surface integrity studies,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 403–1412, 2020, doi: 10.24425/bpasts.2020.135382.
  29.  J.R. Vinod Kumaar and R. Thanigaivelan, “Performance of magnetic field-assisted citric acid electrolyte on electrochemical micro- machining of SS 316L,” Mater. Manuf. Processes, vol. 35, no. 9, pp. 969–977, 2020, doi: 10.1080/10426914.2020.1750630.






DOI: 10.24425/bpasts.2021.138816