Szczegóły

Tytuł artykułu

Wind tunnel tests of hovering propellers in the transition state of Quad-Plane

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2021

Wolumin

69

Numer

6

Afiliacje

Pobikrowska, Katarzyna : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland ; Goetzendorf-Grabowski, Tomasz : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland

Autorzy

Słowa kluczowe

wind tunnel ; propeller ; VTOL ; hybrid UAV ; aerodynamics ; propulsion

Wydział PAN

Nauki Techniczne

Zakres

e138821

Bibliografia

  1.  A.M. Kamal and A. Ramirez-Serrano, “A. Design methodology for hybrid (VTOL + Fixed Wing) unmanned aerial vehicles,” Aeronaut. Aerosp Open Access J., vol. 2, no. 3, pp. 165–176, 2018, doi: 10.15406/aaoaj.2018.02.00047.
  2.  A.S. Saeed, A.B. Younes, C. Cai, and G. Cai, “A survey of hybrid unmanned aerial vehicles,” Prog. Aerosp. Sci., vol. 98, pp. 91–105, 2018, doi: 10.1016/j.paerosci.2018.03.007.
  3.  A. Bacchini and E. Cestino, “Electric vtol configurations comparison,” Aerospace, vol. 6, no. 3, 2019, doi: 10.3390/aerospace6030026.
  4.  T. Goetzendorf-Grabowski, A. Tarnowski, M. Figat, J. Mieloszyk, and B. Hernik, “Lightweight unmanned aerial vehicle for emergency medical service – Synthesis of the layout,” Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., vol. 235, pp. 5–21, 2020, doi: 10.1177/0954410020910584.
  5.  S.D. Prior, Optimizing Small Multi-Rotor Unmanned Aircraft. CRC Press, Taylor & Francis Group, 2018.
  6.  G. Avanzini, E.L. de Angelis, and F. Giulietti, “Optimal performance and sizing of a battery-powered aircraft,” Aerosp. Sci. Technol., vol. 59, pp. 132–144, 2016, doi: 10.1016/j.ast. 2016.10.015.
  7.  Z. Goraj, A. Frydrychewicz, R. Świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, S. Suchodolski, and W. Chajec, “High altitude long endurance unmanned aerial vehicle of a new generation – A design challenge for a low cost, reliable and high performance aircraft,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 52, no. 3, pp. 173–194, 2004.
  8.  D. Serrano, M. Ren, A.J. Qureshi, and S. Ghaemi, “Effect of disk angle-of-attack on aerodynamic performance of small propellers,” Aerosp.  Sci. Technol., vol. 92, pp. 901–914, 2019, doi: 10.1016/j.ast.2019.07.022.
  9.  D.G. Koenig, “V/STOL Wind Tunnel Testing,” NASA Ames Research Center, Tech. Rep. TM-85936, 1984.
  10.  S. Xiang, Y.-qiang Liu, G. Tong, W.-ping Zhao, S.-xi Tong, and Y.-dong Li, “An improved propeller design method for the electric aircraft,” Aerosp. Sci. Technol., vol. 78, pp.  488–493, 2018, doi: 10.1016/j.ast.2018.05.008.
  11.  M. Rostami and A. hamzeh Farajollahi, “Aerodynamic performance of mutual interaction tandem propellers with ducted uav,” Aerosp.  Sci. Technol., vol. 108, p. 106399, 2021, doi: 10.1016/j.ast.2020.106399.
  12.  A. Bacchini, E. Cestino, B. Van Magill, and D. Verstraete, “Impact of lift propeller drag on the performance of evtol lift + cruise aircraft,” Aerosp. Sci. Technol., vol. 109, p.  106429, 2021, doi: 10.1016/j.ast.2020.106429.
  13.  M. Cerny and C. Breitsamter, “Investigation of small-scale propellers under non-axial inflow conditions,” Aerosp. Sci. Technol., vol. 106, p. 106048, 2020, doi: 10.1016/j.ast.2020.106048.
  14.  C.E. Hughes and J.A. Gazzaniga, “Low-Speed Wind Tunnel Performance of High-speed Counterrotation Propellers at Angleof- Attack,” NASA, Tech. Rep. TM-102292, 1989.
  15.  R.E. Kuhn and J.W. Draper, “Investigation of The Aerodynamic Characteristics Of A Model Wing-Propeller Combination And Of The Wing And Propeller Separately At Angles Of Attack Up To 90,” NACA, Tech. Rep. 1263, 1956.
  16.  H.C. McLemore and M.D. Cannon, “Aerodynamic Investigation Of A Four-Blade Propeller Operating Through An Angle-Of-Attack Range From 0 To 180,” NACA, Tech. Rep. 3228, 1954.
  17.  C. Russell, J. Jung, G.C. Willink, and B. Glasner, “Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles,” NASA, Tech. Rep. TM-2018-219758, 2016.
  18.  M.A.J. Kuitche, R.M. Botez, R. Viso, J.C. Maunand, and O.C. Moyao, “Blade element momentum new methodology and wind tunnel test performance evaluation for the UAS-S45 Bàlaam propeller,” CEAS Aeronaut. J., vol. 11, pp. 937–953, 2020, doi: 10.1007/s13272- 020-00462-x.
  19.  J.G. Leishman, Principles of Helicopter Aerodynamics, 2nd ed. Cambridge University Press, 2006.
  20.  S. Drzewiecki, Theorie Generale de l’Helice. Paris, 1920.
  21.  J.V. Foster and D. Hartman, “High-fidelity multi-rotor unmanned aircraft system (uas) simulation development for trajectory prediction under off-nominal flight dynamics,” in 17th AIAA Aviation Technology, Integration, and Operations Conference. AIAA, 2017, doi: 10.2514/6.2017-3271.
  22.  K. Pobikrowska, “Wind tunnel testing of electric propulsion system for an unmanned vtol aircraft,” Master’s thesis,Warsaw University of Technology, 2019.
  23.  R. Zawiski and M. Błachuta, “Modelling and optimal control system design for quadrotor platform – an extended approach,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 3, pp. 535–550, 2014, doi: 10.2478/bpasts-2014-0058.
  24.  M. Tyan, N.V. Nguyen, S. Kim, and J.-W. Lee, “Comprehensive preliminary sizing/resizing method for a fixed wing – vtol electric uav,” Aerosp. Sci. Technol., vol. 71, pp. 30–41, 2017, doi: 10.1016/j.ast.2017.09.008.
  25.  J.S. Vanderover and K.D. Visser, “Analysis of a contrarotating propeller driven transport aircraft,” 2006, AIAA Student Paper Competition, Syracuse, New York, USA. 31 March–1 April.
  26.  V. Štorch, M. Brada, and J. Nozicka, “Experimental setup for measurement of contra-rotating propellers,” in Proceedings Topical Problems of Fluid Mechanics 2017, D. Šimurda and T. Bodnár, Eds., 2017, pp. 285–294, doi: 10.14311/TPFM.2017.036.
  27.  C.P. Coleman, “A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research,” NASA, Tech. Rep. TP-3675, 1997.
  28.  B. Theys, G. Dimitriadis, P. Hendrick, and J. De Schutter, “Influence of propeller configuration on propulsion system efficiency of multi- rotor unmanned aerial vehicles,” in 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 2016, pp.  195–201, doi: 10.1109/ICUAS.2016.7502520.
  29.  J. Roskam, Airplane Aerodynamics and Performance. DARcorporation, 2016.
  30.  J.C. Bell et al., “Development of a test-rig for exploring optimal conditions of small unmanned aerial vehicle co-axial rotor systems,” in International Conference on Manufacturing Engineering Systems, 2010, pp. 439–444.
  31.  W. Zhou, Z. Ning, H. Li, and H. Hu, “An experimental investigation on rotor-to-rotor interactions of small uav propellers,” in 35th AIAA Applied Aerodynamics Conference. AIAA, 2017, doi: 10.2514/6.2017-3744.

Data

16.09.2021

Typ

Article

Identyfikator

DOI: 10.24425/bpasts.2021.138821 ; ISSN 2300-1917
×