Details
Title
Agitation efficiency of different physical systemsJournal title
Chemical and Process EngineeringYearbook
2021Volume
vol. 42Issue
No 2Affiliation
Karcz, Joanna : West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland ; Szoplik, Jolanta : West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland ; Major-Godlewska, Marta : West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland ; Cudak, Magdalena : West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland ; Kiełbus-Rapała, Anna : West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, PolandAuthors
Keywords
agitated vessel ; power consumption ; mixing time ; heat and mass transfers ; gas hold-upDivisions of PAS
Nauki TechniczneCoverage
139-156Publisher
Polish Academy of Sciences Committee of Chemical and Process EngineeringBibliography
Busciglio A., Opletal M., Moucha T., Montante G., Paglianti A., 2017. Measurement of gas hold-up distribution in stirred vessels equipped with pitched blade turbines by means of Electrical Resistance Tomography. Chem. Eng. Trans., 57, 1273–1278. DOI: 10.3303/CET1757213.Cudak M., 2016. Experimental and numerical analysis of transfer processes in a biophase–gas–liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa.
Cudak M., 2020. The effect of vessel scale on gas hold-up in gas–liquid systems. Chem. Process Eng., 41, 4, 241–256. DOI: 10.1515/cpe-2016-0005.
Cudak M., Galego Zarosa R., Lopez Vazquez I., Karcz J., 2019. An effect of different factors on the production of mechanically agitated multiphase biophase–gas–liquid systems. Chem. Eng. Trans., 74, 1021–1026. DOI: 10.3303/CET1974171.
Cudak M., Kiełbus-R˛apała A., Major-Godlewska M., Karcz J., 2016. Influence of different factors on momentum transfer in mechanically agitated multiphase systems. Chem. Process Eng., 37, 41–53. DOI: 10.1515/cpe-2016-0005.
Harnby N., Edwards M.F., Nienow A.W., 1997. Mixing in the process industries. Butterworth Co Ltd, London.
Kamienski J., 2004. Agitation of multiphase systems (in Polish), WNT, Warszawa.
Karcz J., Cudak M., 2002. Efficiency of the heat transfer process in a jacketed agitated vessel equipped with an eccentrically located impeller. Chem. Pap., 56, 6, 382–386.
Karcz J., Cudak M., Szoplik J., 2005. Stirring of a liquid in a stirred tank with an eccentrically located impeller. Chem. Eng. Sci., 60, 2369–2380. DOI: 10.1016/j.ces.2004.11.018.
Karcz J., Major M., 2001. Experimental studies of heat transfer in an agitated vessel equipped with vertical tubular coil (in Polish). Inz. Chem. i Proc., 22, 445–459.
Kiełbus-Rąpała A., 2006. The studies of transfer processes in a mechanically agitated three-phase liquid–gas–solid system (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.
Kiełbus-Rąpała A., Karcz J., 2009. Influence of suspended solid particles on gas–liquid mass transfer coefficient in a system stirred by double impellers. Chem. Pap., 63, 2, 188–196. DOI: 10.2478/s11696-009-0013-y.
Kiełbus-Rąpała A., Rapisarda A., Karcz J., 2019. Experimental analysis of conditions of gas–liquid–floating particles system production in an agitated vessel equipped with two impellers. Chem. Eng. Trans., 74, 1027–1032. DOI: 10.3303/CET1974172.
Kracik T., Petricek R., Moucha T., 2020. Mass transfer in coalescent batch fermenters with mechanical agitation. Chem. Eng. Res. Des., 160, 587–592. DOI: 10.1016/j.cherd.2020.03.015.
Kuncewicz Cz., 2012. Mixing of high viscosity liquids: Process principles (in Polish). Łódz University of Technology, Łódz.
Lee B.W., Dudukovic M.P., 2014. Determination of flow regime and gas hold-up in gas–liquid stirred tanks. Chem. Eng. Sci., 109, 264–275. DOI: 10.1016/j.ces.2014.01.032.
Littlejohns J.V., Daugulis A.J., 2007. Oxygen transfer in a gas–liquid system containing solids of varying oxygen affinity. Chem. Eng. J., 129, 67–74. DOI: 10.1016/j.cej.2006.11.002.
Major-Godlewska M., Karcz J., 2018. Power consumption for an agitated vessel equipped with pitched blade turbine and short baffles. Chem. Pap., 72, 1081–1088. DOI: 10.1007/s11696-017-0346-x.
Michalska M., 2001. Heat transfer in a stirred tank equipped with the vertical tubular coil and rotating agitator (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.
Nagata S., 1975. Mixing. Principles and applications, Kodansha Ltd. Tokyo. Novak V., Rieger F., 1994. Mixing in unbaffled vessel. 8th European Conference on Mixing, Cambridge, 21– 23.09.1994, ICHEME Symposium Series, 136, 511–518.
Oldshue J.Y., 1983. Fluid mixing technology. McGraw-Hill, New York.
Ozkan O., Calimli A., Berber R., Oguz H., 2000. Effect on inert solid particles at low concentrations on gas–liquid mass transfer in mechanically agitated reactors. Chem. Eng. Sci., 55, 2737–2740. DOI: 10.1016/S0009-2509(99)00532-1.
Paul E.L., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of industrial mixing: Science and Practice. Wiley.
Petera K., Dostal M., Verisova M., Jirout T., 2017. Heat transfer at the bottom of a cylindrical vessel impinged by a swirling flow from an impeller in a draft tube. Chem. Biochem. Eng. Q., 31, 343–352. DOI: 10.15255/CABEQ.2016.1057.
Petricek R., Moucha T., Rejl F.J., Valenz L., Haidl J., Cmelikova T., 2018. Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transf., 124, 1117–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.04.045.
Rosa V.S., Torneiros D.L.M., Maranhão H.W.A., Moraes M.S., Taqueda M.E.S., Paiva J.L., de Moraes Júnior D., 2020. Heat transfer and power consumption of Newtonian and non-Newtonian liquids in stirred tanks with vertical tube baffles. Appl. Therm. Eng., 176, 115355, 1–24. DOI: 10.1016/j.applthermaleng.2020.115355.
Stręk F., 1981. Agitation and agitated vessels (in Polish). WNT, Warszawa.
Szoplik J., 2004. The studies of the mixing time in a stirred tank with an eccentrically located impeller (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.
Szoplik J., Karcz J., 2005. An efficiency of the liquid homogenization in agitated vessels equipped with off-centred impeller. Chem. Pap., 59, 6a, 373–379.
Tatterson G.B., 1991. Fluid mixing and gas dispersion in agitated tanks. McGraw Hill Inc, Tokyo.
Zwietering T.N., 1958. Suspending of solids particles in liquid by agitation. Chem. Eng. Sci., 8, 244–253. DOI: 10.1016/0009-2509(58)85031-9.
Date
2021.12.20Type
ArticleIdentifier
DOI: 10.24425/cpe.2021.138921Editorial Board
Editorial Board
Ali Mesbah, UC Berkeley, USA 0000-0002-1700-0600
Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland 0000-0002-2847-8992
Anna Trusek, Wrocław University of Science and Technology, Poland 0000-0002-3886-7166
Bettina Muster-Slawitsch, AAE Intec, Austria 0000-0002-5944-0831
Daria Camilla Boffito, Polytechnique Montreal, Canada 0000-0002-5252-5752
Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland 0000-0002-2924-7360
Dorota Antos, Rzeszów University of Technology, Poland 0000-0001-8246-5052
Evgeny Rebrov, University of Warwick, UK 0000-0001-6056-9520
Georgios Stefanidis, National Technical University of Athens, Greece 0000-0002-4347-1350
Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland 0000-0001-5378-3115
Johan Tinge, Fibrant B.V., The Netherlands 0000-0003-1776-9580
Katarzyna Bizon, Cracow University of Technology, Poland 0000-0001-7600-4452
Katarzyna Szymańska, Silesian University of Technology, Poland 0000-0002-1653-9540
Marcin Bizukojć, Łódź University of Technology, Poland 0000-0003-1641-9917
Marek Ochowiak, Poznań University of Technology, Poland 0000-0003-1543-9967
Mirko Skiborowski, Hamburg University of Technology, Germany 0000-0001-9694-963X
Nikola Nikacevic, University of Belgrade, Serbia 0000-0003-1135-5336
Rafał Rakoczy, West Pomeranian University of Technology, Poland 0000-0002-5770-926X
Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong 0000-0001-7444-2678
Tom van Gerven, KU Leuven, Belgium 0000-0003-2051-5696
Tomasz Sosnowski, Warsaw University of Technology, Poland 0000-0002-6775-3766