Tytuł artykułu

Adaptive crash energy absorber based on a granular jamming mechanism

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences








Bartkowski, Piotr : Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Poland ; Bukowiecki, Hubert : Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Poland ; Gawiński, Franciszek : Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Poland ; Zalewski, Robert : Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Poland


Słowa kluczowe

granular jamming ; smart structures ; crash energy absorption

Wydział PAN

Nauki Techniczne




  1.  J. Holnicki-Szulc, P. Pawlowski, and M. Wiklo, “High-performance impact absorbing materialsthe concept, design tools and applications,” Smart Mater. Struct., vol. 12, no. 3, pp. 461–467, May 2003, doi: 10.1088/0964-1726/12/3/317.
  2.  T. Fras, C.C. Rot, and D. Mohr, “Application of two fracture models in impact simulations”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 317–325, 2020.
  3.  N. Schmidová, T. Zavřelová, M. Vašíček, F. Zavadil, M. Růžička, and M. Rund, “Development of Adaptable CFRP Energy Absorbers for Car Crashes”, Mater. Today:. Proc., vol. 5, no. 13, part 2, pp. 26784–26791, 2018, doi: 10.1016/j.matpr.2018.08.152.
  4.  M. Pyrz and M. Krzywoblocki, “Crashworthiness optimization of thin-walled tubes using Macro Element Method and Evolutionary Algorithm,” Thin-Walled Struct., vol. 112, pp. 12–19, Feb. 2017.
  5.  C. Graczykowski and R. Faraj, “Development of control systems for fluid-based adaptive impact absorbers”, Mech. Syst. Signal Process., vol. 122, pp. 622–641, 2019, doi: 10.1016/j.ymssp.2018.12.006.
  6.  P. Bartkowski and R. Zalewski, “Designing Process of the Drone’s Passive Safety System”, in: New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 445, Á. Rocha, A. Correia, H. Adeli, L. Reis, M. Mendonça Teixeira, (Eds.), Springer, Cham., doi: 10.1007/978-3-319-31307-8_74.
  7.  A.M. Molan, M. Rezapour, and K. Ksaibati, “Modeling traffic barriers crash severity by considering the effect of traffic barrier dimensions”, J. Modern Transp., vol. 27, no. 2, pp. 141–151, 2019, doi: 10.1007/s40534-019-0186-1.
  8.  R. Zalewski, Modelowanie i badania wpływu podcis´nienia na włas´ciwos´ci mechaniczne specjalnych struktur granulowanych, Wydawnictwo Komunikacji i Łączności, 2013.
  9.  L. Blanc, B. François, A. Delchambre, and P. Lambert, “Characterization and modeling of granular jamming: models for mechanical design”, Granular Matter, vol. 23, Feb. 2021, doi: 10.1007/s10035-020-01071-5.
  10.  D. Brigido, S. Burrow, and B. Woods, “Switchable stiffness morphing aerostructures based on granular jamming”, J. Intell. Mater. Syst. Struct., vol. 30, p. 14, Feb. 2019, doi: 10.1177/1045389X19862372.
  11.  L. Li, Z. Liu, M. Zhou, X. Li, Y. Meng, and Y. Tian, “Flexible adhesion control by modulating backing stiffness based on jamming of granular materials”, Smart Mater. Struct., vol. 28, no. 11, p. 115023, Oct. 2019, doi: 10.1088/1361-665x/ab46f3.
  12.  P. Bartkowski, R. Zalewski, and P. Chodkiewicz, “Parameter identification of Bouc-Wen model for vacuum packed particles based on genetic algorithm”, Arch. Civ. Mech. Eng., vol. 19, no. 2, pp. 322–333, 2019, doi: 10.1016/j.acme.2018.11.002.
  13.  M.D. Luscombe and J.L. Williams, “Comparison of a long spinal board and vacuum mattress for spinal immobilisation”, Emergency Med. J., vol. 20, no. 5, pp. 476–478, 2003.
  14.  L. Blanc, B. François, A. Delchambre, and P. Lambert, “Granular jamming as controllable stiffness mechanism for endoscopic and catheter applications”, 2016.
  15.  N.G.S. Cheng, “Design and analysis of jammable granular systems”, Thesis (Ph. D.)-Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
  16.  J. Gómez–Paccapelo, A. Santarossa, H. Bustos, and L. Pugnaloni, “Effect of the granular material on the maximum holding force of a granular gripper”, Granular Matter, vol. 23, p. 4, 2021.
  17.  E. Brown et al., “Universal Robotic Gripper Based on the Jamming of Granular Material”, PNAS, vol. 107, Feb. 2010, doi: 10.1073/ pnas.1003250107.
  18.  R. Zalewski, P. Chodkiewicz, and M. Shillor, “Vibrations of a mass-spring system using a granular-material damper”, Appl. Math. Modell., vol. 40, no. 17-18, pp. 8033–8047, 2016.
  19.  S.-Q. An, H.-L. Zou, Z.-C. Deng, and D.-Y. Guo, “Damping effect of particle-jamming structure for soft actuators with 3Dprinted particles”, Smart Mater. Struct., vol. 29, no. 9, p. 95012, Aug. 2020, doi: 10.1088/1361-665x/ab9f47.
  20.  R. Zalewski, “Constitutive model for special granular structures”, Int. J. Non Linear Mech., vol. 45, pp. 279–285, Feb. 2010, doi: 10.1016/j. ijnonlinmec.2009.11.011.
  21.  F. Putzu, J. Konstantinova, and K. Althoefer, “Soft Particles for Granular Jamming”, in: Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science, vol 11650, K. Althoefer, J. Konstantinova, K. Zhang (Eds.), Springer, Cham., doi: 10.1007/978-3- 030-25332-5_6, 2019, pp. 65–74.
  22.  A. Jiang et al., “Robotic Granular Jamming: Does the Membrane Matter?”, Soft Robotics (SoRo), vol. 1, pp. 192–201, Feb. 2014, doi: 10.1089/ soro.2014.0002.
  23.  M.T. Huber, “O podstawach teoryi wytrzymałości”, Prace Matematyczno-Fizyczne, pp. 47–59, 1904.
  24.  P. Cyklis and P. Młynarczyk, “The CFD Based Estimation of Pressure Pulsation Damping Parameters for the Manifold Element”, Procedia Eng., vol. 157, pp. 387–395, 2016, doi: 10.1016/j.proeng.2016.08.381.
  25.  N. Vasiraja and P. Nagaraj, “The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 828–838, 2019, doi: 10.24425/bpasts.2019.130191.






DOI: 10.24425/bpasts.2021.139002 ; ISSN 2300-1917