Szczegóły

Tytuł artykułu

Preliminary modelling methodology of a coupled payload-vessel system for offshore lifts of light and heavyweight objects

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2022

Wolumin

70

Numer

1

Afiliacje

Mackojć, Anna : Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland ; Chiliński, Bogumil : Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland

Autorzy

Słowa kluczowe

offshore lifting modelling ; coupled payload-vessel model ; payload pendulation

Wydział PAN

Nauki Techniczne

Zakres

e139003

Bibliografia

  1.  W.G. Acero, L. Li, Z. Gao, and T. Moan, “Methodology for assessment of the operational limits and operability of marine operations,” Ocean Eng., vol. 125, pp. 308–327, 2016, doi: 10.1016/j.oceaneng.2016.08.015.
  2.  W. Meng, L.H. Sheng, M. Qing, and B.G. Rong, “Intelligent control algorithm for ship dynamic positioning,” Arch. Control Sci., vol. 24, 2014, doi: 10.2478/acsc-2014-0026.
  3.  L. Li, Z. Gao, T. Moan, and H. Ormberg, “Analysis of lifting operation of a monopile for an offshore wind turbine considering vessel shielding effects,” Marine Struct., vol. 39, pp. 287–314, 2014, doi: 10.1016/j.marstruc.2014.07.009.
  4.  H. Zhu, L. Li, and M. Ong, “Study of lifting operation of a tripod foundation for offshore wind turbine,” in IOP Conf. Ser.: Mater. Sci. Eng., vol. 276, no. 1, 2017, doi: 10.1088/1757-899X/276/1/012012.
  5.  H.-S. Kang, C.H.-H. Tang, L.K. Quen, A. Steven, and X. Yu, “Prediction on parametric resonance of offshore crane cable for lowering subsea structures,” in 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS). IEEE, 2016, pp. 165–170, doi: 10.1109/USYS.2016.7893905.
  6.  H.-S. Kang, C.H.-H. Tang, L.K. Quen, A. Steven, and X. Yu, “Parametric resonance avoidance of offshore crane cable in subsea lowering operation through a* heuristic planner,” Indian J. Geo-Marine Sci., 2017.
  7.  V. Čorić, I. Ćatipović, and V. Slapničar, “Floating crane response in sea waves,” Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, vol. 65, no. 2, pp. 111–120, 2014.
  8.  N. Sun, Y. Wu, H. Chen, and Y. Fang, “An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments,” Mech. Syst. Signal Process., vol. 102, pp. 87–101, 2018, doi: 10.1016/j.ymssp.2017.09.027.
  9.  X. Peng, Z. Geng et al., “Anti-swing control for 2-d underactuated cranes with load hoisting/lowering: A coupling-based approach,” ISA Trans., vol. 95, pp. 372–378, 2019, doi: 10.1016/j.isatra.2019.04.033.
  10.  Y.-G. Sun, H.-Y. Qiang, J. Xu, and D.-S. Dong, “The nonlinear dyn., and anti-sway tracking control for offshore container crane on a mobile harbor,” J. Marine Sci. Technol., vol. 25, no. 6, p. 5, 2017, doi: 10.6119/JMST-017-1226-05.
  11.  Q.H. Ngo, N.P. Nguyen, C.N. Nguyen, T.H. Tran, and Q.P. Ha, “Fuzzy sliding mode control of an offshore container crane,” Ocean Eng., vol. 140, pp. 125–134, 2017, doi: 10.1016/j.oceaneng.2017.05.019.
  12.  X. Xu and M. Wiercigroch, “Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum,” Nonlinear Dyn., vol. 47, no. 1-3, pp. 311–320, 2007, doi: 10.1007/s11071-006-9074-4.
  13.  D. Yurchenko and P. Alevras, “Stability, control and reliability of a ship crane payload motion,” Probab. Eng. Mech., vol. 38, pp. 173–179, 2014, doi: 10.1016/j.probengmech.2014.10.003.
  14.  X. Zhao and J. Huang, “Distributed-mass payload dynamics and control of dual cranes undergoing planar motions,” Mech. Syst. Signal Process., vol. 126, pp. 636–648, 2019, doi: 10.1016/j.ymssp.2019.02.032.
  15.  Z. Ren, A.S. Verma, B. Ataei, K.H. Halse, and H.P. Hildre, “Model-free anti-swing control of complex-shaped payload with offshore floating cranes and a large number of lift wires,” Ocean Eng., vol. 228, 2021, doi: 10.1016/j.oceaneng.2021.108868.
  16.  N.-K. Ku, J.-H. Cha, M.-I. Roh, and K.-Y. Lee, “A tagline proportional–derivative control method for the anti-swing motion of a heavy load suspended by a floating crane in waves,” Proc. Inst. Mech. Eng., Part M: J. Eng. Marit. Environ., vol. 227, no. 4, pp. 357–366, 2013, doi: 10.1177/1475090212445546.
  17.  S. Robak and R. Raczkowski, “Substations for offshore wind farms: A review from the perspective of the needs of the polish wind energy sector,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 4, 2018, doi: 10.24425/124268.
  18.  “Recommended practice modelling and analysis of marine operations n103,” DET NORSKE VERITAS GL, pp. Sec. 9.2–9.3, 2017.
  19.  “Recommended practice c205 environmental conditions and environmental loads,” DET NORSKE VERITAS GL, p. Sec. 3.3.2, 2010.
  20. Fathom Group Ltd. Engineering Procedure, 2018.
  21.  P. Boccotti, Wave mechanics and wave loads on marine structures. Butterworth-Heinemann, 2014.
  22.  B. Chilinski, A. Mackojc, R. Zalewski, and K. Mackojc, “Proposal of the 3-dof model as an approach to modelling offshore lifting dynamics,” Ocean Eng., vol. 203, pp. 287–314, 2020, doi: 10.1016/j.oceaneng.2020.107235.

Data

25.02.2022

Typ

Article

Identyfikator

DOI: 10.24425/bpasts.2021.139003 ; ISSN 2300-1917
×