Details

Title

New model of the sedimentation process of polydisperse post-coagulation suspension

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

6

Authors

Affiliation

Rząsa, Mariusz : Department of Computer Science, Opole University of Technology, ul. Oleska 48, 45-052 Opole, Poland ; Łukasiewicz, Ewelina : Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, ul. St. Mikołajczyka 5, 45-271 Opole, Poland

Keywords

sedimentation modelling ; polydisperse suspension ; iterative model

Divisions of PAS

Nauki Techniczne

Coverage

e139004

Bibliography

  1.  Z. Su et al., “Coagulation of Surface water: Observations of the significance of biopolymers,” Water Res., vol. 126, pp. 144–152, 2017, doi: 10.1016/j.watres.2017.09.022.
  2.  L. Postolachi et al., “Improvement of coagulation process for the Prut River water treatment using aluminum sulphate,” Chem. J. Mold., vol. 10, no. 1, pp. 25–32, 2015, doi: 10.3923/jest.2017.268.275.
  3.  D. Mroczko and I. Zimoch, “Coagulation of pollutions occurring in surface waters during time of dynamic water flow,” Ecol. Eng., vol. 19, no. 2, pp. 15–22, 2018, doi: 10.12911/22998993/118273.
  4.  S. Janiszewska, “Comparison of coagulation methods and electrocoagulation in purification model gray water,” Eko-Dok, vol. 26, pp. 223– 229, 2012.
  5.  I. Krupińska and A. Konkol, “The influence of selected technological parameters on the course and effectiveness of coagulation in graund water treatment”, Uniwersytet Zielonogórski, Zeszyty Naukowe, Environmental Egineering, vol. 37, no. 157, pp. 36–52, 2015.
  6.  T.E. Dutkiewicz, Fizykochemia powierzchni, Wydawnictwa Naukowo-Techniczne, Warsaw, 1998.
  7.  R. Wardzyńska, L. Smoczyński, R. Wolicki, B. Załęska-Chróst, and Z. Bukowski, “Computer simulation of flocculation and chemical coagulation,” Ecol. Chem. Eng., vol. 17, no. 12, pp.  1663–1672, 2010.
  8.  B. Joon Lee and F. Molz, “Numerical simulation of turbulenceinduced flocculation and sedimentation in a flocculent-aided sediment retention pond,” Environ. Eng. Res., vol. 19, no. 2, pp. 165–174, 2014, doi: 10.4491/eer.2014.19.2.165.
  9.  M.A. Goula, M. Kostoglou, D.T. Karapantsios, and I.A. Zoubolis, “A CFD methodology for the design of sedimentation tanks in potable water treatment, Case study: The influence of a feed flow control baffle,” Chem. Eng. J., vol. 140, pp. 110–121, 2008, doi: 10.1016/j. cej.2007.09.022.
  10.  L.A. Kowal and M. Świderska-Bróż, Water Treatment, Polish Scientific Publishers PWN, Warsaw–Wroclaw, 2000.
  11.  P.W. Atkins, Physical chemistry, Polish Scientific Publishers PWN, Warsaw, 2007.
  12.  W.T. Hermann, Physical chemistry, Wydawnictwo lekarskie PZWL, Warsaw, 2007.
  13.  S. Berres, R. Bürger, and M.E. Tory, “Applications of polydisperse sedimentation models,” Chem. Eng. J., vol. 111, no.  2–3, pp. 105–117, 2005.
  14.  R. Błażejewski, Sedimentation of solid particles. Fundamentals of theory with examples of applications, Polish Scientific Publishers PWN, Warsaw, 2015.
  15.  J. Bandrowski, H. Merta, and J. Zioło, Sedimentation of suspensions. Rules and design, Silesian University of Technology Publisher, Gliwice, 1995.
  16.  M. Dziubiński and J. Prywer, Mechanics of two-phase fluids, WNT publisher, Warsaw, 2018.
  17.  Z. Orzechowski, J. Prywer, and R. Zarzycki, Fluid mechanics in engineering and environmental protection, Scientific and Technical Publishers, Warsaw 2009.
  18.  K.D. Basson, S. Berres, and R. Bürger, “On models of polydisperse sedimentation with particle-size-specific hindered-settling factors,”Appl. Math. Modell., vol. 33, no. 4, pp. 1815–1835, 2009, doi: 10.1016/j.apm.2008.03.021.
  19.  M. Bargieł, A.R. Ford, and M.E. Tory, “Simulation of sedimentation of polydisperse suspensions: A particle-based Approach,” AIChE J., vol. 51, no. 9, pp. 2457–2468, 2005.
  20.  S.P. Antal, R.T. Lahey, and L.E. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow, vol. 17, pp. 635, 1991, doi: 10.1016/0301-9322(91)90029-3.
  21.  J.F. Richardson and W.N. Zaki, “Sedimentation and Fluidization. Part 1,” Trans. Inst. Chem. Eng., vol. 32, pp. 35–53, 1954.
  22.  J.F. Richardson, J.H. Harker, and J.R. Backhurst, Chemical engineering, vol.2 – Particle Technology and Separtion Processes, Butterworth- Heinemann, 2002.
  23.  J. Garside and M.R. Al-Dibouni, “Velocity-voidage relationship for fluidization and sedimentation in solid-liquid systems,” Ind. Eng. Chem. Process Des. Dev., vol. 16, pp. 206–214, 1977, doi: 10.1021/i260062a008.
  24.  J. Happel and N. Epstein, “Viscous flow in multiparticle systems: cubical assemblage of uniform spheres,” Ind. Eng.Chem., vol. 46, pp. 1187–1194, 1954.
  25.  F. Barnea and J. Mizrahi, “A generalized approach of fluid dynamics of particulate system. Part I. General correlation for fluidization and sedimentation in solid multiparticle systems,” J. Fluid Mech., vol. 52, no. 2, pp. 245–268, 1973.
  26.  E. Barnea and J. Mizrahi, “A generalized approach to the fluid dynamics of particulate systems: General correlation for fluidization and sedimentation in solid multiparticle systems,” The Chem. Eng. J., vol. 5, no. 2, pp. 171–189, 1973, doi: 10.1016/0300-9467(73)80008-5.
  27.  P.M. Biesheuvel, H. Verweij and V. Breedveld, “Evaluation of instability criterion for bidisperse sedimentation,” AIChE J., vol. 47, no. 1, pp. 45–52, 2001, doi: 10.1002/aic.690470107.
  28.  V.S. Patwardhan and C. Tien, “Sedimentation and fluidization in solid-liquid systems: A simple approach,” AIChE J., vol. 31, no. 1, pp. 146–149, Jan. 1985, doi: 10.1002/aic.690310117.
  29.  M. Syamlal and T.J. O’Brien, “Simulation of granular layer inversion in liquid fluidized beds,” Int. J. Multiphase Flow, vol. 14, no. 4, pp. 473–481, 1988, doi: 10.1016/0301-9322(88)90023-7.
  30.  T.N. Smith, “The differential sedimentation of particles of two different spacies,” Inst. Chem. Eng. Trans., vol. 43, pp. T69–T73, 1965.
  31.  P. Krishnamoorthy, “Sedimentation model and analysis for differential settling of two-particle-size suspensions in the Stokes region,” Int. J. Sediment Res., vol. 25, no. 2, pp. 119–133, 2010, doi: 10.1016/S1001-6279(10)60032-7.
  32.  J. Bandrowski, H. Merta and J. Zioło, Sedimentation of suspensions, principles and design, Silesian University of Technology Publisher, Gliwice, 1995.
  33.  J.F. Richardson and F.A. Shabi, “The determination of concentration distribution on sedimenting suspension using radioactive solids,” Transactions of the Institution of Chemical Engineers, vol. 38, pp. 33–41, 1960.
  34.  T.N. Smith, “The differential sedimentation of particles of various species,” Transactions of the Institution of Chemical Engineers, vol. 45, pp. T311–T313, 1967.
  35.  B. Xue and Y. Sun, “Modeling of sedimentation of polydisperse spherical beads with a broad size distribution,” Chem. Eng. Sci., vol. 58, pp. 1531–1543, 2003, doi: 10.1016/S0009-2509(02)00656-5.
  36.  Y. Zimmels, “Theory of hindered sedimentation of polydisperse mixtures,” AIChE J., vol. 29, no. 4, pp. 669–676, 1983, doi: 10.1002/ AIC.690290423.
  37.  J. Happel, “Viscus flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles,” AIChE J., vol. 4, no. 2, pp. 197–201, 1958.
  38.  S.F. Chien, “Settling Velocity of Irregularly Shaped Particles, Society of Petroleum Engineers,” SPE Drill. Complet., vol. 4, no. 04, pp. 281–289, 1994, doi: 10.2118/26121-PA.
  39.  G.H. Ganser, “A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles,” Powder Technol., vol. 77, no.  2, pp. 143–152, 1993, doi: 10.1016/0032-5910(93)80051-B.
  40.  A. Haider and O. Levenspiel, “Drag Coefficient and Terminal Velocity of Spherical and Non-Spherical Particles,” Powder Technol., vol. 58, no. 1, pp. 63–70, 1989, doi: 10.1016/0032-5910(89)80008-7.
  41.  L. Rosendahl, “Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow,” Appl. Math. Modell., vol. 24, no. 1, pp. 11‒25, 2000, doi: 10.1016/S0307-904X(99)00023-2.
  42.  M. Zastawny, G. Mallouppas, F. Zhao, and B. van Wachem, “Derivation of drag and lift force and torque coefficients for nonspherical particles in flows,” Int. J. Multiphase Flow, vol. 39, pp 227‒239, 2012, doi: 10.1016/j.ijmultiphaseflow.2011.09.004.
  43.  A. Hölzer and M. Sommerfeld, “New simple correlation formula for the drag coefficient of non-spherical particles,” Powder Technol., vol. 184, no. 3, pp. 361–365, June 2008, doi: 10.1016/j.powtec.2007.08.021.
  44.  R. Barati, S.A. Neyshabouri, and G. Ahmadi, “Issues in Eulerian– Lagrangian modeling of sediment transport under saltation regime,” Int. J. Sediment Res., vol. 33, no. 4, pp. 441–461, 2018, doi: 10.1016/j.ijsrc.2018.04.003.
  45.  B. Oesterle and B. Dinh, ”Experiments on the lift of a spinning sphere in the range of intermediate Reynolds numbers,” Exp. Fluids, vol. 25, no.1, pp. 16–22, 1998, doi: 10.1007/s003480050203.
  46.  I. Mema, V.V. Mahajan, B W. Fitzgerald, and J.T. Padding, “Effect of lift force and hydrodynamic torque on fluidisation of nonspherical particles,” Chem. Eng. Sci., vol. 195, no. 23, pp. 642– 656, 2019, doi: 10.1016/j.ces.2018.10.009.
  47.  S.K.P. Sanjeevi, J.A.M. Kuipers, and J.T. Padding, “Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers,” Int. J. Multiphase Flow, vol.  106, pp. 325–337, 2018, doi: 10.1016/j.ijmultiphaseflow.2018.05.011.
  48.  S.F. Hoerner, Fluid-dynamic drag, Published by the Autor, 1965.
  49.  R. Ouchene, M. Khalij, B. Arcen, and A. Tanière, “A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers,” Powder Technol., vol. 303, pp. 33–43, 2016, doi: 10.1016/j.powtec.2016.07.067.
  50.  M. Leva, M. Weintraub, M. Grummer, M. Pollchik, and H.H. Storsh, “Fluid flow through packed and fluidized systems,” Bull. U. S. Min. Bur., vol. 504, 1951.
  51.  V. Saritha, N. Srinivas, and N.V. Srikanth Vuppala, “Analysis and optimization of coagulation and ?occulation process,” Appl. Water Sci., vol. 7, pp. 451–460, 2017, doi: 10.1007/s13201-014-0262-y.
  52.  M. Smoluchowski, “Versuch einer mathematischen theorie der koagulationskinetic,” Kolloider Lsungen Zeitschrift für Physikalische Chemie, vol. 92, pp. 129–168, 1917.
  53.  H. Müller, “Zur allgemeinen teorie der raschen koagulation,” Kolloidbeihefte, vol. 27, pp. 223‒250, 1928.
  54.  F.S. Torrealba, A Continuous mathematical model of the one-dimensional sedimentation process of flocculated sediment particles, University of Kentucky Doctoral Dissertations, 2010.
  55.  D. Miedzińska, T. Niezgoda, E. Małek, and Z. Zasada, “Study on coal microstructure for porosity levels assessment,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 499–505, doi: 10.2478/bpasts-2013-0049.

Date

04.11.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.139004
×