Szczegóły

Tytuł artykułu

FLHex: a flapped-paddle hexapod for all-terrain amphibious locomotion

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2021

Wolumin

69

Numer

6

Afiliacje

Burzynski, Piotr : Bialystok University of Technology, Department of Robotics and Mechatronics, ul. Wiejska 45C, 15-351 Bialystok, Poland ; Simha, Ashutosh : School of Information Technologies, Department of Software Science, Tallinn University of Technology, 12618 Tallinn, Estonia ; Kotta, Ülle : School of Information Technologies, Department of Software Science, Tallinn University of Technology, 12618 Tallinn, Estonia ; Pawluszewicz, Ewa : Bialystok University of Technology, Department of Robotics and Mechatronics, ul. Wiejska 45C, 15-351 Bialystok, Poland ; Sastry, Shivakumar : University of Akron, Department of Electrical and Computer Engineering, Akron, Ohio 44325, USA

Autorzy

Słowa kluczowe

biologically-inspired robots ; amphibious robotics ; mechanism design

Wydział PAN

Nauki Techniczne

Zakres

e139007

Bibliografia

  1.  A. Crespi, K. Karakasiliotis, A. Guignard, and A.J. Ijspeert, “Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits,” IEEE Trans. Rob., vol. 29, no. 2, pp. 308‒320, 2013.
  2.  M. Gad-El-Hak, “Coherent structures and flow control: genesis and prospect,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 411‒444, 2019.
  3.  A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen, “From swimming to walking with a salamander robot driven by a spinal cord model,” Science, vol. 315, no. 5817, pp. 1416‒1420, 2007.
  4.  E. Natarajan, K.Y. Chia, A.A.M. Faudzi, W.H. Lim, Ch.K. Ang, and A. Jafaari, “Bio Inspired Salamander Robot with Pneu-Net Soft ac- tuators-Design and Walking Gait Analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3, 2021, Article number: e137055, doi: 10.24425/ bpasts.2021.137055.
  5.  K. Karakasiliotis and A.J. Ijspeert, “Analysis of the terrestrial locomotion of a salamander robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis 2009, pp. 5015‒5020.
  6.  P. Liljebäck, Ø. Stavdahl, K.Y. Pettersen, and J.T. Gravdahl, “Mamba-A waterproof snake robot with tactile sensing,” in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, US, 2014, pp. 294‒301.
  7.  S. Hirose and H. Yamada, “Snake-like robots machine design of biologically inspired robots,” IEEE Rob. Autom. Mag., vol. 3, 2009.
  8.  J. Yu, R. Ding, Q. Yang, M. Tan, and J. Zhang, “Amphibious Pattern Design of a Robotic Fish with Wheel-propeller-fin Mechanisms,” J. Field Rob., vol. 30, no. 5, pp. 702‒716, 2013.
  9.  J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, and J. Zhang, “On a bio-inspired amphibious robot capable of multimodal motion,” IEEE/ ASME Trans. Mechatron., vol. 17, no. 5, pp. 847‒856, 2011.
  10.  T. Paschal, M.A. Bell, J. Sperry, S. Sieniewicz, R.J. Wood, and J.C. Weaver, “Design, fabrication, and characterization of an untethered amphibious sea urchin-inspired robot,” IEEE Rob. Autom. Lett., vol. 4, no. 4, pp. 3348‒3354, 2019.
  11.  V. Kaznov and M. Seeman, “Outdoor navigation with a spherical amphibious robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan 2010, pp. 5113‒5118.
  12.  Y. Shen, Y. Sun, H. Pu and S. Ma, “Experimental verification of the oscillating paddling gait for an ePaddle-EGM amphibious locomotion mechanism,” IEEE Rob. Autom. Lett., vol. 2, no. 4, pp.  2322‒2327, 2017.
  13.  U. Saranli, M. Buehler, and D.E. Koditschek, “Design, modeling and preliminary control of a compliant hexapod robot,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco,CA, 2000, vol.3, pp. 2589‒2596.
  14.  U. Saranli, M. Buehler, and D.E. Koditschek, “RHex: A simple and highly mobile hexapod robot,” Int. J. Rob. Res., vol.  20, no. 7, pp. 616‒631, 2001.
  15.  G. Dudek et al., “Aqua: An amphibious autonomous robot,” Computer, vol. 40, no. 1, pp. 46‒53, 2007.
  16.  Ch. Georgiades, M. Nahon, and M. Buehler, “Simulation of an underwater hexapod robot,” Ocean Eng., vol. 36, no. 1, pp. 39‒47, 2009.
  17.  X. Liang et al., “The amphihex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism,” in Proceed- ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 2012, pp. 3667‒3672.
  18.  S. Zhang, X. Liang, L. Xu, and M. Xu, “Initial development of a novel amphibious robot with transformable fin-leg composite propulsion mechanisms,” J. Bionic Eng., vol. 10, no. 4, pp.434‒445, 2013.
  19.  S. Zhang, Y. Zhou, M. Xu, X. Liang, J. Liu, and J. Yang, “AmphiHex-I: locomotory performance in amphibious environments with specially designed transformable flipper legs,” IEEE/ASME Trans. Mechatron., vol. 21, no. 3, p. 1720‒1731, 2015.
  20.  P. Burzyński, Poland, FLHex: A Flapped-Paddle Hexapod, (Aug. 01, 2021). [Online Video]. Available: https://www.youtube.com/ watch?v=Ux1AlOFUUco (Accessed: Aug. 2, 2021).
  21.  A. Simha, R. Gkliva, Ü. Kotta, and M. Kruusmaa, “A Flapped Paddle-Fin for Improving Underwater Propulsive Efficiency of Oscillatory Actuation,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp.  3176‒3181, 2020.
  22.  K.E. Crandell and B.W. Tobalske, “Kinematics and aerodynamics of avian upstrokes during slow flight,” J. Exp. Biol., vol. 218, no. 16, pp. 2518‒2527, 2015.
  23.  W. Yang and B. Song, “Experimental investigation of aerodynamics of feather-covered flapping wing,” Appl. Bionics Biomech., vol. 2017, 2017, Article ID: 3019640. doi: 10.1155/2017/3019640.
  24.  B.B. Dey, S. Manjanna, and Dudek G., “Ninja legs: Amphibious one degree of freedom robotic legs,” in Proceedings of the 2013 IEEE/ RSJ International Conference on Intelligent Robots and Systems, Tokio, Japan, 2013, pp. 5622‒5628.
  25.  S.B.A. Kashem, S. Jawed, A. Jubaer, and Q. Uvais, “Design and Implementation of a Quadruped Amphibious Robot Using Duck Feet,” Robotics, vol. 8, no. 3, p. 77, 2019, doi: 10.3390/robotics8030077.
  26.  B. Kwak and J. Bae, “Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming,” Bioinspir. Biomim., vol. 12, no. 3, p. 036014, 2017, doi: 10.1088/1748-3190/aa6c7a.
  27.  S.B. Behbahani and X. Tan, “Design and modeling of flexible passive rowing joint for robotic fish pectoral fins,” IEEE Trans. Rob., vol. 32, no. 5, pp. 1119‒1132, 2016.
  28.  Ch.J. Esposito, J.L. Tangorra, B.E. Flammang, and G.V. Lauder, “A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance,” J. Exp. Biol., vol. 215, no. 1, pp. 56‒67, 2012.
  29.  G.V. Lauder, “Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns,” Am. Zool., vol. 40, no. 1, pp. 101‒122, 2000.
  30.  S.C. Licht, M. Wibawa, F.S. Hover, and M.S. Triantafyllou, “Towards amphibious robots: Asymmetric flapping foil motion underwater produces large thrust efficiently,” Technical Raport, Massachusetts Institute of Technology. Sea Grant College Program, 2009.
  31.  Ch. Meurer, A. Simha, Ü. Kotta, and M. Kruusmaa, “Nonlinear Orientation Controller for a Compliant Robotic Fish Based on Asymmetric Actuation,” in Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019, pp. 4688‒4694.
  32.  G.V. Lauder and E.D. Tytell, “Hydrodynamics of undulatory propulsion,” Fish Physiol., vol. 23, pp. 425‒468, 2005.
  33.  M. Bozkurttas, J. Tangorra, G. Lauder, and R. Mittal, “Understanding the hydrodynamics of swimming: From fish fins to flexible pro- pulsors for autonomous underwater vehicles,” Adv. Sci. Technol., vol.58, pp. 193‒202, 2008.
  34.  N. Martin, Ch. Roh, S. Idrees, and M. Gharib, “To flap or not to flap: comparison between flapping and clapping propulsions,” J. Fluid Mech., vol.822, p. R5, 2017, doi: 10.1017/jfm.2017.252.
  35.  M. Sfakiotakis, D.M. Lane, and J.B.C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE J. Oceanic Eng., vol. 24, no. 2, pp. 237‒252, 1999.
  36.  R. Gkliva, M. Sfakiotakis, and M. Kruusmaa, “Development and experimental assessment of a flexible robot fin,” in Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 208‒213.

Data

27.09.2021

Typ

Article

Identyfikator

DOI: 10.24425/bpasts.2021.139007 ; ISSN 2300-1917
×