Details
Title
Couple stress fluid past a sphere embedded in a porous mediumJournal title
Archive of Mechanical EngineeringYearbook
2022Volume
vol. 69Issue
No 1Affiliation
Madasu, Krishna Prasad : Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, India ; Sarkar, Priya : Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, IndiaAuthors
Keywords
sphere ; couple stress fluid ; saturated porous medium ; Brinkman’s equation ; drag forceDivisions of PAS
Nauki TechniczneCoverage
5-19Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] J. Bear. Dynamics of fluids in porous media. Courier Corporation, 2013.[2] H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, 1(1):27–34, 1949. doi: 10.1007/bf02120313.
[3] R.H. Davis and H.A. Stone. Flow through beds of porous particles. Chemical Engineering Science, 48(23):3993–4005, 1993. doi: 10.1016/0009-2509(93)80378-4.
[4] B. Barman. Flow of a Newtonian fluid past an impervious sphere embedded in a porous medium. Indian Journal of Pure and Applied Mathematics, 27:1249–1256, 1996.
[5] I. Pop and D.B. Ingham. Flow past a sphere embedded in a porous medium based on the Brinkman model. International Communications in Heat and Mass Transfer, 23(6):865–874, 1996. doi: 10.1016/0735-1933(96)00069-3.
[6] D. Srinivasacharya and J.V. Ramana Murthy. Flow past an axisymmetric body embedded in a saturated porous medium. Comptes Rendus Mécanique, 330(6):417–423, 2002. doi: 10.1016/s1631-0721(02)01478-x.
[7] T. Grosan, A. Postelnicu, and I. Pop. Brinkman flowof a viscous fluid through a spherical porous medium embedded in another porous medium. Transport in Porous Media, 81(1):89–103, 2010. doi: 10.1007/s11242-009-9389-y.
[8] S. Deo and B.R. Gupta. Drag on a porous sphere embedded in another porous medium. Journal of Porous Media, 13(11):1009–1016, 2010. doi: 10.1615/JPorMedia.v13.i11.70.
[9] N.E. Leontev. Flow past a cylinder and a sphere in a porous medium within the framework of the Brinkman equation with the Navier boundary condition. Fluid Dynamics, 49(2):232–237, 2014. doi: 10.1134/S0015462814020112.
[10] S. El-Sapa. Effect of permeability of Brinkman flow on thermophoresis of a particle in a spherical cavity. European Journal of Mechanics-B/Fluids, 79:315–323, 2020. doi: 10.1016/j.euromechflu.2019.09.017.
[11] M.S. Faltas, H.H. Sherief, A.A. Allam, and B.A. Ahmed. Mobilities of a spherical particle straddling the interface of a semi-infinite Brinkman flow. Journal of Fluids Engineering, 143(7):071402, 2021. doi: 10.1115/1.4049931.
[12] M. Krishna Prasad and D. Srinivasacharya. Micropolar fluid flow through a cylinder and a sphere embedded in a porous medium. International Journal of Fluid Mechanics Research, 44(3):229–240, 2017. doi: 10.1615/InterJFluidMechRes.2017015283.
[13] B.R. Jaiswal. A non-Newtonian liquid sphere embedded in a polar fluid saturated porous medium: Stokes flow. Applied Mathematics and Computation, 316:488–503, 2018. doi: 10.1016/j.amc.2017.08.009.
[14] K. Ramalakshmi and P. Shukla. Drag on a fluid sphere embedded in a porous medium with solid core. International Journal of Fluid Mechanics Research, 46(3):219–228, 2019. doi: 10.1615/InterJFluidMechRes.2018025197.
[15] K.P. Madasu and T. Bucha. Influence of mhd on micropolar fluid flow past a sphere implanted in porous media. Indian Journal of Physics, 95(6):1175–1183, 2021. doi: 10.1007/s12648-020-01759-7.
[16] V.K. Stokes. Couple stresses in fluids. In Theories of Fluids with Microstructure, pages 34–80. Springer, 1966. doi: 10.1007/978-3-642-82351-0_4.
[17] V.K. Stokes. Theories of Fluids with Microstructure: An Introduction. Springer Science & Business Media, 2012. doi: 10.1007/978-3-642-82351-0.
[18] D. Pal, N. Rudraiah, and R. Devanathan. A couple stress model of blood flow in the microcirculation. Bulletin of Mathematical Biology, 50(4):329–344, 1988. doi: 10.1007/BF02459703.
[19] N.A. Khan, A. Mahmood, and A. Ara. Approximate solution of couple stress fluid with expanding or contracting porous channel. Engineering Computations, 30(3):399–408, 2013. doi: 10.1108/02644401311314358.
[20] D. Srinivasacharya and K. Kaladhar. Mixed convection flowof couple stress fluid in a non-Darcy porous medium with Soret and Dufour effects. Journal of Applied Science and Engineering, 15(4):415–422, 2012.
[21] M. Devakar, D. Sreenivasu, and B. Shankar. Analytical solutions of couple stress fluid flows with slip boundary conditions. Alexandria Engineering Journal, 53(3):723–730, 2014. doi: 10.1016/j.aej.2014.06.005.
[22] D. Srinivasacharya, N. Srinivasacharyulu, and O. Odelu. Flow of couple stress fluid between two parallel porous plates. International Journal of Applied Mathematics, 41(2).
[23] E.A. Ashmawy. Drag on a slip spherical particle moving in a couple stress fluid. Alexandria Engineering Journal, 55(2):1159–1164, 2016. doi: 10.1016/j.aej.2016.03.032.
[24] P. Aparna, P. Padmaja, N. Pothanna, and J.V. Ramana Murthy. Couple stress fluid flow due to slow steady oscillations of a permeable sphere. Nonlinear Engineering, 9(1):352–360, 2020. doi: 10.1515/nleng-2020-0021.
[25] S.O. Adesanya, S.O. Kareem, J.A. Falade, and S.A. Arekete. Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material. Energy, 93:1239–1245, 2015. doi: 10.1016/j.energy.2015.09.115.
[26] A.R. Hassan. The entropy generation analysis of a reactive hydromagnetic couple stress fluid flow through a saturated porous channel. Applied Mathematics and Computation, 369:124843, 2020. doi: 10.1016/j.amc.2019.124843.
[27] S.I.Abdelsalam, J.X.Velasco-Hernández, and A.Z. Zaher. Electro-magnetically modulated selfpropulsion of swimming sperms via cervical canal. Biomechanics and Modeling in Mechanobiology, 20(3):861–878, 2021. doi: 10.1007/s10237-020-01407-3.
[28] M.M. Bhatti, S.Z. Alamri, R. Ellahi, and S.I. Abdelsalam. Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer. Journal of Thermal Analysis and Calorimetry, 144(6):2259–2267, 2021. doi: 10.1007/s10973-020-10233-9.
[29] A.R. Hadjesfandiari and G.F. Dargush. Polar continuum mechanics. arXiv preprint arXiv:1009.3252, 2010.
[30] A.R. Hadjesfandiari and G.F. Dargush. Couple stress theory for solids. International Journal of Solids and Structures, 48(18):2496–2510, 2011. doi: 10.1016/j.ijsolstr.2011.05.002.
[31] A.R. Hadjesfandiari, G.F. Dargush, and A. Hajesfandiari. Consistent skew-symmetric couple stress theory for size-dependent creeping flow. Journal of Non-Newtonian Fluid Mechanics, 196:83–94, 2013. doi: 10.1016/j.jnnfm.2012.12.012.
[32] A.R. Hadjesfandiari, A. Hajesfandiari, and G.F. Dargush. Skew-symmetric couple-stress fluid mechanics. Acta Mechanica, 226(3):871–895, 2015. doi: 10.1007/s00707-014-1223-0.
[33] C.L.M.H. Navier. Mémoires de l’Académie Royale des Sciences de l’Institut de France. Royale des Sciences de l’Institut de France, 1823.
[34] I.M. Eldesoky, S.I. Abdelsalam, W.A. El-Askary, A.M. El-Refaey, and M.M. Ahmed. Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube. BioNanoScience, 9(3):723–739, 2019. doi: >10.1007/s12668-019-00651-x.
[35] M.M. Bhatti and S.I. Abdelsalam. Thermodynamic entropy of a magnetized ree-eyring particle-fluid motion with irreversibility process: A mathematical paradigm. Journal of Applied Mathmatics nd Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 101(6):e202000186, 2021. doi: 10.1002/zamm.202000186.
[36] S. El-Sapa and N.S. Alsudais. Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces. The European Physical Journal E, 44(5):1–11, 2021. doi: 10.1140/epje/s10189-021-00073-2.
[37] K.P. Madasu, M. Kaur, and T. Bucha. Slow motion past a spheroid implanted in a Brinkman medium: Slip condition. International Journal of Applied and Computational Mathematics, 7(4):1–15, 2021. doi: 10.1007/s40819-021-01104-4.
[38] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Springer Science & Business Media, 2012.
[39] S. El-Sapa, E.I. Saad, and M.S. Faltas. Axisymmetric motion of two spherical particles in a brinkman medium with slip surfaces. European Journal of Mechanics-B/Fluids, 67:306–313, 2018. doi: 10.1016/j.euromechflu.2017.10.003.
[40] V.K. Stokes. Effects of couple stresses in fluids on the creeping flow past a sphere. The Physics of Fluids, 14(7):1580–1582, 1971. doi: 10.1063/1.1693645.