Tytuł artykułu

Application of acoustic emission to the analysis of phase transformations in 27MnCrB5-2 steel tests during continuous cooling

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences








Trafarski, Andrzej : Institute of Materials Engineering, Kazimierz Wielki University in Bydgoszcz, ul. J.K. Chodkiewicza 30, 85-064 Bydgoszcz, Poland ; Łazarska, Małgorzata : Institute of Materials Engineering, Kazimierz Wielki University in Bydgoszcz, ul. J.K. Chodkiewicza 30, 85-064 Bydgoszcz, Poland ; Ranachowski, Zbigniew : Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland


Słowa kluczowe

microstructure ; phase transformation ; ultrasonics ; acoustic emission ; continuous cooling

Wydział PAN

Nauki Techniczne




  1.  T.Z. Wozniak, K. Rozniatowski, and Z. Ranachowski, “Acoustic emission in bearing steel during isothermal formation of midrib,” Met. Mater. Int., vol. 17, pp. 365–373, 2011, doi: 10.1007/s12540-011-0611-4.
  2.  L. Kyzioł, K. Panasiuk, G. Hajdukiewicz, and K. Dudzik, “Acoustic Emission and K-S Metric Entropy as Methods for Determining Mechanical Properties of Composite Materials”, Sensors, vol. 21, p. 145, 2021, doi: 10.3390/s21010145.
  3.  A. Adamczak-Bugno, G. Swit, and A. Krampikowska, “Application of the Acoustic Emission Method in the Assessment of the Technical Condition of Steel Structures,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 471, no. 3 p. 032041, 2019, doi: 10.1088/1757-899X/471/3/032041.
  4.  A. Krampikowska, and A. Adamczak-Bugno, “Evaluation of destructive processes in FRC composites using time-frequency analysis of AE signals,” MATEC Web Conf., vol. 262, p. 06006, 2019, doi: 10.1051/matecconf/201926206006.
  5.  G. Świt, A. Krampikowska, T. Pała, S. Lipiec, and I. Dzioba, “Using AE Signals to Investigate the Fracture Process in an Al–Ti Laminate,” Materials, vol. 13, p. 2909, 2020, doi: 10.3390/ma13132909.
  6.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, P. Ranachowski, and A. Trafarski, “The application of acoustic emission and artificial neural networks in an analysis of kinetics in the phase transformation of tool steel during austempering,” Arch. Metall. Mater., vol. 62, pp. 603‒609, 2017, doi: 10.1515/amm-2017-0089.
  7.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, A. Trafarski, and G. Domek, “Analysis of acoustic emission signals at austempering of steels using neural networks,” Met. Mater. Int., vol.  23, pp. 426‒433, 2017, doi: 10.1007/s12540-017-6347-z.
  8.  Y. Li et al., “Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel”, Int. J. Miner. Metall. Mater., vol. 21, pp. 1196–1204, 2014, doi: 10.1007/s12613-014-1027-1.
  9.  B.I. Voronenko, “Acoustic emission during phase transformations in alloys,” Met. Sci. Heat Treat., vol. 24, pp. 545‒553, 1982, doi: 10.1007/BF00769364.
  10.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, A. Trafarski, and S. Marciniak, “The use of acoustic emission and neural network in the study of phase transformation below MS,” Materials, vol. 14, no. 3, p. 551, 2021, doi: 10.3390/ma14030551.
  11.  T.Z. Wozniak, K. Różniatowski, and Z. Ranachowski, “Application of acoustic emission to monitor bainitic and martensitic transformation,” Kovove Mater., vol. 49, pp. 319‒331, 2011, doi: 10.4149/km_2011_5_319.
  12.  A. Pawełek, Z. Ranachowski, A. Piątkowski, S. Kúdela, Z. Jasieński, and S. Kúdela, “Acoustic emission and strain mechanisms during compression at elevated temperature of ß phase Mg-Li-Al composites reinforced with ceramic fibres,” Arch. Metall. Mater., vol. 52, pp. 41‒48. 2007.
  13.  Z. Ranachowski, “Acoustic emission in the diagnosis of civil structures,” Roads Bridges, vol. 2, pp. 151‒173, 2012.
  14.  J. Ranachowski, Problemy współczesnej akustyki, Polska Akademia Nauk, IPPT, Warszawa, 1991.
  15.  R. Botten, X. Wu, D. Hu, and M.H. Loretto, “The significance of acoustic emission during stressing of TiAl-based alloys,” Acta Mater., vol. 49, pp. 1687‒1691, 2001, doi: 10.1016/S1359-6454(01)00091-X.
  16.  A. Lambert, X. Garat, T. Sturel, A. F. Gourgues, and A. Gingell, “Aplication of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel,” Scripta Mater., vol. 43, pp. 161‒166, 2000, doi: 10.1016/S1359-6462(00)00386-9.
  17.  K. Panasiuk, L. Kyziol, K. Dudzik, and G. Hajdukiewicz, “Application of the Acoustic Emission Method and Kolmogorov-Sinai Metric Entropy in Determining the Yield Point in Aluminium Alloy,” Materials, vol. 13, p. 1386, 2020, doi: 10.3390/ma13061386.
  18.  A. Pawełek, W.S. Ozgowicz, Z. Ranachowski, and S. Kúdela, “Behaviour of acoustic emission in deformation and microcracking processes of Mg alloys matrix composites subjected to compression tests,” Arch. Curr. Res. Int., vol.8, no. 2, pp. 1‒13, 2017, doi: 10.9734/ ACRI/2017/34598.
  19.  R. Karczewski, A. Zagórski, J. Płowiec, and W. Spychalski, “Charakterystyki sygnałów akustycznych podczas obciążania wybranych stali konstrukcyjnych wykorzystywanych do budowy urządzeń ciśnieniowych,” Weld. Tech. Rev., vol. 83, no. 13, 2011, doi: 10.26628/ wtr.v83i13.417.
  20.  I. Baran, “Non-destructive testing of technical equipment using acoustic emission method,” Nondestr. Testing Diagn., vol. 4, pp. 15‒19, 2019, doi: 10.26357/BNiD.2019.017.
  21.  D. Aggelis, E. Kordatos, and T. Matikas, “Acoustic emission for fatigue damage characterization in metal plates”, Mech. Res. Commun., vol. 38, pp. 106–110, 2011, doi: 10.1016/j.mechrescom.2011.01.011.
  22.  K. Jemielniak, “Some aspects of acoustic emission signal pre-processing,” J. Mater. Process. Tech., vol. 109, pp. 242‒247, 2001, doi: 10.1016/S0924-0136(00)00805-0.
  23.  RILEM Technical Committee (Masayasu Ohtsu), “Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete,” Mater. Struct., vol. 43, pp. 1177–1181, 2010, doi: 10.1617/s11527- 010-9638-0.
  24.  Z. Ranachowski, “The application of a neural network to classify the acoustic emission waveforms emitted by the concrete under thermal stress,” Arch. Acoust., vol. 21, no. 1, pp. 89‒98, 1996.
  25.  H.K.D.H. Bhadeshia, “Phase transformations contributing to the properties of modern steels,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 255–256, 2010, doi: 10.2478/v10175-010-0024-4.
  26.  S.M.C. Van Bohemen, An acoustic emission study of martensitic and bainitic transformations in carbon steel, Delft University Press, 2004.
  27.  A. Pawełek, J. Kuśnierz, J. Bogucka, Z. Jasieński, and Z. Ranachowski, “Acoustic emission and the Portevin-Le Châtelier effect in tensile tested Al alloys before and after processing by accumulative roll bonding,” Arch. Metall. Mater., vol.  54, pp. 83‒88, 2009.
  28.  A. Pawełek et al., “Acoustic emission and the Portevin-Le Chatelier effect in tensile tested Al processed by ARB technique,” Arch. Acoust., vol. 32, no. 4, pp. 955‒962, 2007.
  29.  H.N.G. Wadley and C.B. Scruby, “Cooling rate effects on acoustic emission- microstructure relationships in ferritic steels,” J. Mater. Sci., vol. 26, pp. 5777–5792, 1991, doi: 10.1007/BF01130115.
  30.  C.B. Scruby and H.N.G Wadley, “Tempering Effects on Acoustic Emission Microstructural Relationships in Ferritic Steels,” J. Mater. Sci., vol. 28, pp. 2501–2516, 1993, doi: 10.1007/BF01151686.
  31.  V.V. Roshchupkin et al., “The use of acoustic methods to investigate the dynamics of recrystallization and phase transitions in Armco iron and structural steel,” High Temp., vol.  42, pp. 883–887, 2004, doi: 10.1007/s10740-005-0032-5.
  32.  G.R. Speich and A.J. Schwoeble, “Acoustic Emission During Phase Transformałion in Steel”, in Monitoring Structural Integrity by Acoustic Emission STP571. J. C. Spanner and J.W. McElroy, Eds., ASTM International, USA, 1975, pp. 40‒58.






DOI: 10.24425/bpasts.2021.139389 ; ISSN 2300-1917