A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications

Journal title

Opto-Electronics Review








Adhikari, R. : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India ; Adhikari, R. : School of Engineering, Pokhara University, Pokhara Metropolitan City 30, Kaski, Nepal ; Chauhan, D. : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India ; Mola, G. T. : School of Chemistry and Physics, University of Kwazulu Natal, Scottsville, South Africa ; Dwivedi, R. P. : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India



coupled resonator ; Fano resonance ; finite element method ; plasmonic nanosensor ; sensitivity ; waveguide

Divisions of PAS

Nauki Techniczne




    1. De Tommasi, E. et al. Frontiers of light manipulation in natural, metallic, and dielectric nanostructures. Riv. del Nuovo Cim. 44,
      1–68 (2021).
    2. Maier, S.  Surface plasmon polaritons at metal /insulator interfaces. in Plasmonics: Fundamentals and Applications:Chapter 2, 1–2 (Springer, New York, 2007).
    3. Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D. Appl. Phys. 45, 113001 (2012).span>
    4. Naik, G. V, Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).
    5. Luo, X. & Yan, L. Surface plasmon polaritons and its applications. IEEE Photon. J. 4, 590–595 (2012).
    6. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics. 1114–1115 (2nd ed.) (Wiley press, 2007).
    7. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010).
    8. Kinsey, N., Ferrera, M., Shalaev, V. M. & Boltasseva, A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. J. Opt. Soc. Am. B 32, 121–142 (2015).
    9. Amoosoltani, N., Yasrebi, N., Farmani, A. & Zarifkar, A. A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sens. J. 20, 9097–9104 (2020).       
    10. Han, Z. & Bozhevolnyi, S. I. Radiation guiding with surface plasmon polaritons. Reports Prog. Phys. 76, 016402 (2013).
    11. Lu, H., Wang, G. X. & Liu, X.M. Manipulation of light in MIM plasmonic waveguide systems. Chin. Sci. Bull. 58, 3607–3616 (2013).
    12. Onbasli, M. C. & Okyay, A. K. Nanoantenna couplers for metal-insulator-metal waveguide interconnects. Proc. SPIE 7757, 77573R (2010).
    13. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017).
    14. Luk’Yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).
    15. Wang, J. et al. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt. Express 21, 2236–2244 (2013).
    16. Lovera, A., Gallinet, B., Nordlander, P. & Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013).
    17. Fan, J. A. et al. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett. 10, 4680–4685 (2010)   .
    18. Kazanskiy, N. L., Khonina, S. N. & Butt, M. A. Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys. E Low Dimens. Syst. Nanostruct. 117, 113798 (2020).
    19. Verellen, N. et al. Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods. Nano Lett. 14,
      2322–2329 (2014).
    20. Huang, Y., Min, C., Dastmalchi, P. & Veronis, G. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt. Express 23, 14922 (2015)       .
    21. Luo, S., Li, B., Xiong, D., Zuo, D. & Wang, X. A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12, 223–227 (2017).
    22. Rakhshani, M. R. & Mansouri-Birjandi, M. A. A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photonics Nanostruct. 32, 28–34 (2018).
    23. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 66, 1038–1043 (2019).  https:/
    24. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 202, 163655 (2020).      
    25. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).
    26. Yang, R. & Lu, Z. Subwavelength plasmonic waveguides and plasmonic materials. Int. J. Opt. 2012 (2012).
    27. Han, Z. & Bozhevolnyi, S. I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011).
    28. Zhan, S. et al. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J. Phys. D. Appl. Phys. 47, (2014).      
    29. Piao, X., Yu, S., Koo, S., Lee, K. & Park, N. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express 19, 10907–10912 (2011).
    30. Fu, Y. H., Zhang, J. B., Yu, Y. F. & Luk’yanchuk, B. Generating and manipulating higher order Fano resonances in dual-disk. ACS Nano 6, 5130–5137 (2012).
    31. Fang, J., Zhang, M., Zhang, F. & Yu, H. Plasmonic sensor based on Fano resonance. Guangdian Gongcheng/Opto-Electron. Eng. 44, 221–225 (2017).
    32. Yu, Y. et al. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photonics Rev. 9, 241–247 (2015).
    33. Chen, Z. & Yu, L. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. 6, 1–8 (2014).  10.1109/JPHOT.2014.2368779
    34. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).
    35. Chen, Z. et al. A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system. IEEE Photon. Technol. Lett. 27, 1695–1698 (2015). 10.1109/LPT.2015.2437850
    36. Wei, W., Yan, X., Shen, B. & Zhang, X. Plasmon-induced transparency in an asymmetric bowtie structure. Nanoscale Res. Lett. 14, 246 (2019).
    37. Song, H., Singh, R., Cong, L. & Yang, H. Engineering the Fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial. J. Phys. D. Appl. Phys. 48, 035104 (2015).
    38. Yu, S., Piao, X., Hong, J. & Park, N. Progress toward high-Q perfect absorption : A Fano anti-laser. Phys. Rev. A 92, 011802R (2015).
    39. Yan, X. et al. High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators. Plasmonics 12, 1449–1455 (2016).         
    40. Chen, J., Gan, F., Wang, Y. & Li, G. Plasmonic sensing and modulation based on Fano resonances. Adv. Opt. Mater. 6, 1701152 (2018).
    41. Deng, Y., Cao, G. & Yang, H. Tunable Fano resonance and high-sensitivity sensor with high figure of merit in plasmonic coupled cavities. Photonics Nanostruct. 28, 45–51 (2018).
    42. Hayashi, S., Nesterenko, D. V. & Sekkat, Z. Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl. Phys. Express 8, 022201 (2015).
    43. Heuck, M., Kristensen, P. T., Elesin, Y. & Mørk, J. Improved switching using Fano resonances in photonic crystal structures. Opt. Lett. 38, 2466 (2013).
    44. Chen, Z. et al. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 320, 6–11 (2014).
    45. Qi, J. et al. Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt. Express 22,
      14688–14695 (2014).
    46. Chen, Z.-Q. et al. Fano resonance based on multimode interference in symmetric plasmonic structures and its applications in plasmonic nanosensors. Chin. Phys. Lett. 30, 057301 (2013).       
    47. Gu, P., Birch, D. J. S. & Chen, Y. Dye-doped polystyrene-coated gold nanorods: Towards wavelength tuneable SPASER. Methods Appl. Fluoresc. 2, 024004 (2014).       
    48. Zafar, R. & Salim, M. Enhanced Figure of Merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15, 6313–6317 (2015).
    49. Zhang, Y. et al. Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt. Commun. 370, 203–208 (2016).
    50. Zhang, Y. et al. Ultra-high Sensitivity plasmonic nanosensor based on multiple Fano resonance in the MDM side-coupled cavities. Plasmonics 12, 1099–1105 (2017).       
    51. Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Transmission line and equivalent circuit models for plasmonic waveguide components. EEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008).
    52. Han, Z., Van, V., Herman, W. N. & Ho, P.-T. Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt. Express 17, 12678–12684 (2009).
    53. Li, Q., Wang, T., Su, Y., Yan, M. & Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367 (2010).
    54. Achanta, V.G. Surface waves at metal-dielectric interfaces: Material science perspective. Rev. Phys. 5, 100041 (2020).
    55. Niu, L., Zhang, J. B., Fu, Y. H., Kulkarni, S. & Luky`anchuk, B. Fano resonance in dual-disk ring plasmonic nanostructures. Opt. Express 19, 22974–22981 (2011).         
    56. Kolwas, K. & Derkachova, A. Impact of the Interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 10, 1411 (2020).
    57. Thomas, P. A. Plasmonics. in Narrow Plasmon Resonances in Hybrid Systems 7–27 (Springer, 2018).
    58. Noah, N. M. Design and synthesis of nanostructured materials for sensor applications. J. Nanomater. 2020, 8855321 (2020).
    59. Chen, F. & Yao, D. Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt. Commun. 369, 72–78 (2016).
    60. Zhang, Y. et al. High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl. Phys. A 125, 13 (2019).
    61. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019).   
    62. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011).
    63. West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010). 
    64. Deng, Y. et al. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci. Rep. 7, 10639 (2017).
    65. Zhang, Z. et al. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18, 116 (2018).
    66. Chauhan, D., Adhikari, R., Saini, R. K., Chang, S. H. & Dwivedi, R. P. Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 223, 165545 (2020).
    67. Zhang, Z., Luo, L., Xue, C., Zhang, W. & Yan, S. Fano resonance based on metal-insulator-metal waveguide-coupled double rectan-gular cavities for plasmonic nanosensors. Sensors 16, 22–24 (2016).
    68. Chen, Z., Cui, L., Song, X., Yu, L. & Xiao, J. High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt. Commun. 340, 1–4 (2015).
    69. Tian, J., Wei, G., Yang, R. & Pei, W. Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik 208, 164136 (2020).
    70. Chou Chao, C.-T., Chou Chau, Y.-F & Chiang, H.-P. Multiple Fano resonance modes in an ultra-compact plasmonic waveguide-cavity system for sensing applications. Results Phys. 27, 104527 (2021).
    71. Rakhshani, M. R. Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics Nanostruct. 39, 100768 (2020).
    72. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019).   
    73. Ren, X., Ren, K. & Cai, Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl. Opt. 56, H1–H9 (2017).
    74. Tang, Y. et al. Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17, 784 (2017).
    75. Yang, X., Hua, E., Su, H., Guo, J. & Yan, S. A nanostructure with defect based on Fano resonance for application on refractive-index and temperature sensing. Sensors 20, 4125 (2020).
    76. Chen, Y. et al. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator. Opt. Laser Technol. 101, 273–278 (2018).  
    77. Binfeng, Y., Ruohu, Z., Guohua, H. & Yiping, C. Ultra-sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 11, 1157–1162 (2016).
    78. Zhang, Q., Huang, X.-G., Lin, X.-S., Tao, J. & Jin, X.-P. A subwavelength coupler-type MIM optical filter. Opt. Express 17, 7549–7554(2009).
    79. Rakhshani, M. R. Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing. Opt. Quantum Electron. 51, 287 (2019).
    80. Chen, F., Zhang, H., Sun, L., Li, J. & Yu, C. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 116, 293–299 (2019).         
    81. He, Y. et al. Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator. Opt. Quantum Electron. 52, 391 (2020).
    82. Dionne, J.  et al. A. Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010).
    83. Zhan, S. et al. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci. Rep. 6, 22428 (2016).
    84. Guo, Z. et al. Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors 18, 1348 (2018).
    85. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Multiple Fano resonances in a coupled plasmonic resonator system. J. Appl. Phys. 126, 083102 (2019).
    86. Chen, Z., Song, X., Duan, G., Wang, L. & Yu, L. Multiple Fano resonances control in MIM side-coupled cavities systems. IEEE Photonics J. 7, 1–10 (2015).
    87. Zhang, X. et al. Refractive Index Sensor based on Fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sens. 8, 367–374 (2018).   
    88. Yang, X. et al. Fano resonance in a MIM waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 19, 4972 (2019).
    89. Wang, W.-D., Zheng, L. & Qi, J.-G. High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric nanocylinder dimer metamaterials. Appl. Phys. Express 12, 075002 (2019).
    90. Špačková, B., Wrobel, P., Bocková, M. & Homola, J. Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104, 2380–2408 (2016).     
    91. Li, S. et al. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt. Express 25, 3525–3533 (2017).
    92. Butt, M. A., Kazanskiy, N. L. & Khonina, S. N. Nanodots decorated asymmetric metal-insulator-metal waveguide resonator structure based on Fano resonances for refractive index sensing application. Laser Phys. 30, (2020).   
    93. Chen, Z., Cao, X. & Song, X. Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11,
      307– 313 (2016).
    94. Wang, Y., Li, S., Zhang, Y. & Yu, L. Independently formed multiple Fano resonances for ultra-high sensitivity plasmonic nanosensor. Plasmonics 13, 107–113 (2018).
    95. Chen, J. et al. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 482, 126563 (2021).
    96. Chen, J. et al. Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8, 1627–1631 (2013).
    97. Wen, K. et al. Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10, 27–32 (2015).
    98. Yang, J. et al. Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor. Plasmonics 12, 1665–1672 (2017). 
    99. Wen, K., Chen, L., Zhou, J., Lei, L. & Fang, Y. A Plasmonic chip-scale refractive index sensor design based on multiple Fano reso-nances. Sensors 18, 3181 (2018).
    100. Liu, Y. et al. Theoretical design of plasmonic refractive index sensor based on the fixed band detection. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019).
    101. Qiao, L., Zhang, G., Wang, Z., Fan, G. & Yan, Y. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019).
    102. Xiao, G. et al. High sensitivity plasmonic sensor based on Fano resonance with inverted u-shaped resonator. Sensors 21, 1–12 (2021).
    103. Li, C. et al. Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor. IEEE Photonics J. 9, 1– 9 (2017).
    104. Shi, X. et al. Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt. Commun. 427, 326–330 (2018).
    105. Chen, Z. et al. Sensing characteristics based on Fano resonance in rectangular ring waveguide. Opt. Commun. 356, 373–377 (2015).
    106. Wang, M., Zhang, M., Wang, Y., Zhao, R. & Yan, S. Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19, 791 (2019).
    107. Yu, S., Zhao, T., Yu, J. & Pan, D. Tuning multiple fano resonances for on-chip sensors in a plasmonic system. Sensors 19, 1559 (2019).
    108. Rahmatiyar, M., Danaie, M. & Afsahi, M. Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt. Quantum Electron. 52, 153 (2020).
    109. Li, Z. et al. Manipulation of multiple Fano resonances based on a novel chip-scale MDM structure. IEEE Access 8, 32914–32921 (2020).
    110. Fang, Y. et al. Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photon. J. 11, 1–8 (2019). 10.1109/JPHOT.2019.2914483
    111. Wang, Q., Ouyang, Z., Sun, Y., Lin, M. & Liu, Q. Linearly tunable Fano resonance modes in a plasmonic nanostructure with a  waveguide loaded with two rectangular cavities coupled by a circular cavity. Nanomaterials 9, 678 (2019).     
    112. Su, H. et al. Sensing features of the Fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity. Appl. Sci. 10, 5096 (2020). 
    113. Wang, S., Zhao, T., Yu, S. & Ma, W. High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator system. IEEE Access 8, 40599–40611 (2020).
    114. Li, Z. et al. Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system. IEEE Access 7, 59369–59375 (2019).
    115. El Haffar, R., Farkhsi, A. & Mahboub, O. Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A 126, 486 (2020).                              
    116. Hassan, M. F., Hasan, M. M., Ahmed, M. I. & Sagor, R.H. Numerical investigation of a plasmonic refractive index sensor based on rectangular MIM topology. in 2020 International Seminar on Intelligent Technology and its Applications ISITIA 2020, 77–82 (IEEE, 2020).
    117. Wang, Y. et al. Design of sub wavelength-grating-coupled Fano resonance sensor in mid-infrared. Plasmonics 16, 463–469 (2021).
    118. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Double Fano resonances based on different mechanisms in a MIM plasmonic system. Photonics Nanostruct. 36, 100714 (2019).          
    119. Chen, Z., Chen, J., Yu, L. & Xiao, J. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator. Plasmonics 10, 131–137 (2015).
    120. Pang, S. et al. The sensing characteristics based on electro-magnetically-induced transparency-like response in double-sided stub and a nano-disk waveguide system. Mod. Phys. Lett. B 31, 1–9 (2017).
    121. Zhang, Z. D. et al. Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12, 1007–1013 (2017).
    122. Akhavan, A., Ghafoorifard, H., Abdolhosseini, S. & Habibiyan, H. Metal-insulator-metal waveguide-coupled asymmetric resonators for sensing and slow light applications. IET Optoelectron. 12, 220–227 (2018).
    123. Shi, H. et al. A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator. Micromachines 12, 495 (2021).
    124. Meng, Z.-M. & Qin, F. Realizing prominent Fano resonances in metal-insulator-metal plasmonic Bragg gratings side-coupled with plasmonic nanocavities. Plasmonics 13, 2329–2336 (2018).
    125. Tathfif, I., Rashid, K.S., Yaseer, A. A. & Sagor, R.H. Alternative material titanium nitride based refractive index sensor embedded with defects: An emerging solution in sensing arena. Results Phys. 29, 104795 (2021).
    126. Li, Q. et al. Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials. Adv. Mater. Technol. 5, 1–7 (2020).
    127. Ge, J. et al. Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance. Opt. Express 28, 31781–31795 (2020).






DOI: 10.24425/opelre.2021.139601