Details

Title

A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications

Journal title

Opto-Electronics Review

Yearbook

2021

Volume

29

Issue

4

Affiliation

Adhikari, R. : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India ; Adhikari, R. : School of Engineering, Pokhara University, Pokhara Metropolitan City 30, Kaski, Nepal ; Chauhan, D. : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India ; Mola, G. T. : School of Chemistry and Physics, University of Kwazulu Natal, Scottsville, South Africa ; Dwivedi, R. P. : Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India

Authors

Keywords

coupled resonator ; Fano resonance ; finite element method ; plasmonic nanosensor ; sensitivity ; waveguide

Divisions of PAS

Nauki Techniczne

Coverage

148-166

Bibliography

    1. De Tommasi, E. et al. Frontiers of light manipulation in natural, metallic, and dielectric nanostructures. Riv. del Nuovo Cim. 44,
      1–68 (2021). https://doi.org/10.1007/s40766-021-00015-w
    2. Maier, S.  Surface plasmon polaritons at metal /insulator interfaces. in Plasmonics: Fundamentals and Applications:Chapter 2, 1–2 (Springer, New York, 2007).  https://doi.org/10.1007/0-387-37825-1_2
    3. Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D. Appl. Phys. 45, 113001 (2012).span> https://doi.org/10.1088/0022-3727/45/11/113001
    4. Naik, G. V, Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076
    5. Luo, X. & Yan, L. Surface plasmon polaritons and its applications. IEEE Photon. J. 4, 590–595 (2012).     https://doi.org/10.1109/JPHOT.2012.2189436.
    6. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics. 1114–1115 (2nd ed.) (Wiley press, 2007). https://doi.org/10.1063/1.2809878
    7. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010).         https://doi.org/10.1038/nphoton.2009.282
    8. Kinsey, N., Ferrera, M., Shalaev, V. M. & Boltasseva, A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. J. Opt. Soc. Am. B 32, 121–142 (2015). https://doi.org/10.1364/JOSAB.32.000121
    9. Amoosoltani, N., Yasrebi, N., Farmani, A. & Zarifkar, A. A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sens. J. 20, 9097–9104 (2020).          
      https://doi.org/10.1109/JSEN.2020.2987319
    10. Han, Z. & Bozhevolnyi, S. I. Radiation guiding with surface plasmon polaritons. Reports Prog. Phys. 76, 016402 (2013). https://doi.org/10.1088/0034-4885/76/1/016402
    11. Lu, H., Wang, G. X. & Liu, X.M. Manipulation of light in MIM plasmonic waveguide systems. Chin. Sci. Bull. 58, 3607–3616 (2013). https://doi.org/10.1007/s11434-013-5989-6
    12. Onbasli, M. C. & Okyay, A. K. Nanoantenna couplers for metal-insulator-metal waveguide interconnects. Proc. SPIE 7757, 77573R (2010). https://doi.org/10.1117/12.876177
    13. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017).  https://doi.org/10.1038/nphoton.2017.142
    14. Luk’Yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).  https://doi.org/10.1038/nmat2810
    15. Wang, J. et al. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt. Express 21, 2236–2244 (2013). https://doi.org/10.1364/OE.21.002236
    16. Lovera, A., Gallinet, B., Nordlander, P. & Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013). https://doi.org/10.1021/nn401175j
    17. Fan, J. A. et al. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett. 10, 4680–4685 (2010)   . https://doi.org/10.1021/nl1029732
    18. Kazanskiy, N. L., Khonina, S. N. & Butt, M. A. Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys. E Low Dimens. Syst. Nanostruct. 117, 113798 (2020).     https://doi.org/10.1016/j.physe.2019.113798
    19. Verellen, N. et al. Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods. Nano Lett. 14,
      2322–2329 (2014). https://doi.org/10.1021/nl404670x
    20. Huang, Y., Min, C., Dastmalchi, P. & Veronis, G. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt. Express 23, 14922 (2015)       . https://doi.org/10.1364/OE.23.014922
    21. Luo, S., Li, B., Xiong, D., Zuo, D. & Wang, X. A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12, 223–227 (2017).  https://doi.org/10.1007/s11468-016-0253-y
    22. Rakhshani, M. R. & Mansouri-Birjandi, M. A. A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photonics Nanostruct. 32, 28–34 (2018).      https://doi.org/10.1016/j.photonics.2018.08.002
    23. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 66, 1038–1043 (2019).  https:/doi.org/10.1080/09500340.2019.1601272
    24. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 202, 163655 (2020).                https://doi.org/10.1016/j.ijleo.2019.163655
    25. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).  https://doi.org/10.1103/PhysRev.182.539
    26. Yang, R. & Lu, Z. Subwavelength plasmonic waveguides and plasmonic materials. Int. J. Opt. 2012 (2012). https://doi.org/10.1155/2012/258013
    27. Han, Z. & Bozhevolnyi, S. I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011).         https://doi.org/10.1364/OE.19.003251
    28. Zhan, S. et al. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J. Phys. D. Appl. Phys. 47, (2014).      
      https:/doi.org/10.1088/0022-3727/47/20/205101
    29. Piao, X., Yu, S., Koo, S., Lee, K. & Park, N. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express 19, 10907–10912 (2011).   https://doi.org/10.1364/OE.19.010907
    30. Fu, Y. H., Zhang, J. B., Yu, Y. F. & Luk’yanchuk, B. Generating and manipulating higher order Fano resonances in dual-disk. ACS Nano 6, 5130–5137 (2012). https://doi.org/10.1021/nn3007898
    31. Fang, J., Zhang, M., Zhang, F. & Yu, H. Plasmonic sensor based on Fano resonance. Guangdian Gongcheng/Opto-Electron. Eng. 44, 221–225 (2017).  
      https://doi.org/10.3969/j.issn.1003-501X.2017.02.012
    32. Yu, Y. et al. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photonics Rev. 9, 241–247 (2015). https://doi.org/10.1002/lpor.201400207
    33. Chen, Z. & Yu, L. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. 6, 1–8 (2014).           https://doi.org/ 10.1109/JPHOT.2014.2368779
    34. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).  https://doi.org/10.1103/RevModPhys.82.2257
    35. Chen, Z. et al. A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system. IEEE Photon. Technol. Lett. 27, 1695–1698 (2015).   https://doi.org/ 10.1109/LPT.2015.2437850
    36. Wei, W., Yan, X., Shen, B. & Zhang, X. Plasmon-induced transparency in an asymmetric bowtie structure. Nanoscale Res. Lett. 14, 246 (2019). https://doi.org/10.1186/s11671-019-3081-0
    37. Song, H., Singh, R., Cong, L. & Yang, H. Engineering the Fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial. J. Phys. D. Appl. Phys. 48, 035104 (2015).  https://doi.org/10.1088/0022-3727/48/3/035104
    38. Yu, S., Piao, X., Hong, J. & Park, N. Progress toward high-Q perfect absorption : A Fano anti-laser. Phys. Rev. A 92, 011802R (2015).  https://doi.org/10.1103/PhysRevA.92.011802
    39. Yan, X. et al. High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators. Plasmonics 12, 1449–1455 (2016).                   https://doi.org/10.1007/s11468-016-0405-0
    40. Chen, J., Gan, F., Wang, Y. & Li, G. Plasmonic sensing and modulation based on Fano resonances. Adv. Opt. Mater. 6, 1701152 (2018). https://doi.org/10.1002/adom.201701152
    41. Deng, Y., Cao, G. & Yang, H. Tunable Fano resonance and high-sensitivity sensor with high figure of merit in plasmonic coupled cavities. Photonics Nanostruct. 28, 45–51 (2018).      https://doi.org/10.1016/j.photonics.2017.11.008
    42. Hayashi, S., Nesterenko, D. V. & Sekkat, Z. Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl. Phys. Express 8, 022201 (2015). https://doi.org/10.7567/apex.8.022201
    43. Heuck, M., Kristensen, P. T., Elesin, Y. & Mørk, J. Improved switching using Fano resonances in photonic crystal structures. Opt. Lett. 38, 2466 (2013). https://doi.org/10.1364/OL.38.002466
    44. Chen, Z. et al. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 320, 6–11 (2014). https://doi.org/10.1016/j.optcom.2013.12.079
    45. Qi, J. et al. Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt. Express 22,
      14688–14695 (2014). https://doi.org/10.1364/OE.22.014688
    46. Chen, Z.-Q. et al. Fano resonance based on multimode interference in symmetric plasmonic structures and its applications in plasmonic nanosensors. Chin. Phys. Lett. 30, 057301 (2013).                 https://doi.org/10.1088/0256-307x/30/5/057301
    47. Gu, P., Birch, D. J. S. & Chen, Y. Dye-doped polystyrene-coated gold nanorods: Towards wavelength tuneable SPASER. Methods Appl. Fluoresc. 2, 024004 (2014).          
      https://doi.org/10.1088/2050-6120/2/2/024004
    48. Zafar, R. & Salim, M. Enhanced Figure of Merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15, 6313–6317 (2015).   https://doi.org/10.1109/JSEN.2015.2455534
    49. Zhang, Y. et al. Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt. Commun. 370, 203–208 (2016). https://doi.org/10.1016/j.optcom.2016.03.001
    50. Zhang, Y. et al. Ultra-high Sensitivity plasmonic nanosensor based on multiple Fano resonance in the MDM side-coupled cavities. Plasmonics 12, 1099–1105 (2017).          
      https://doi.org/10.1007/s11468-016-0363-6
    51. Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Transmission line and equivalent circuit models for plasmonic waveguide components. EEE J. Sel. Top. Quantum Electron. 14, 1462–1472 (2008). https://doi.org/10.1109/JSTQE.2008.924431
    52. Han, Z., Van, V., Herman, W. N. & Ho, P.-T. Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt. Express 17, 12678–12684 (2009).  https://doi.org/10.1364/OE.17.012678
    53. Li, Q., Wang, T., Su, Y., Yan, M. & Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367 (2010). https://doi.org/10.1364/OE.18.008367
    54. Achanta, V.G. Surface waves at metal-dielectric interfaces: Material science perspective. Rev. Phys. 5, 100041 (2020). https://doi.org/10.1016/j.revip.2020.100041
    55. Niu, L., Zhang, J. B., Fu, Y. H., Kulkarni, S. & Luky`anchuk, B. Fano resonance in dual-disk ring plasmonic nanostructures. Opt. Express 19, 22974–22981 (2011).                   https://doi.org/10.1364/OE.19.022974
    56. Kolwas, K. & Derkachova, A. Impact of the Interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 10, 1411 (2020).  https://doi.org/10.3390/nano10071411
    57. Thomas, P. A. Plasmonics. in Narrow Plasmon Resonances in Hybrid Systems 7–27 (Springer, 2018).        https://doi.org/10.1007/978-3-319-97526-9
    58. Noah, N. M. Design and synthesis of nanostructured materials for sensor applications. J. Nanomater. 2020, 8855321 (2020).    https://doi.org/10.1155/2020/8855321
    59. Chen, F. & Yao, D. Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt. Commun. 369, 72–78 (2016). https://doi.org/10.1016/j.optcom.2016.02.024
    60. Zhang, Y. et al. High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl. Phys. A 125, 13 (2019). https://doi.org/10.1007/s00339-018-2283-0
    61. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019).             https://doi.org/10.1016/j.rinp.2019.102420
    62. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011). https://doi.org/10.1364/OME.1.001090
    63. West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).           https://doi.org/10.1002/lpor.200900055
    64. Deng, Y. et al. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci. Rep. 7, 10639 (2017). https://doi.org/10.1038/s41598-017-10626-1
    65. Zhang, Z. et al. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18, 116 (2018). https://doi.org/10.3390/s18010116
    66. Chauhan, D., Adhikari, R., Saini, R. K., Chang, S. H. & Dwivedi, R. P. Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 223, 165545 (2020). https://doi.org/10.1016/j.ijleo.2020.165545
    67. Zhang, Z., Luo, L., Xue, C., Zhang, W. & Yan, S. Fano resonance based on metal-insulator-metal waveguide-coupled double rectan-gular cavities for plasmonic nanosensors. Sensors 16, 22–24 (2016). https://doi.org/10.3390/s16050642
    68. Chen, Z., Cui, L., Song, X., Yu, L. & Xiao, J. High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt. Commun. 340, 1–4 (2015).   https://doi.org/10.1016/j.optcom.2014.11.081
    69. Tian, J., Wei, G., Yang, R. & Pei, W. Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik 208, 164136 (2020). https://doi.org/10.1016/j.ijleo.2019.164136
    70. Chou Chao, C.-T., Chou Chau, Y.-F & Chiang, H.-P. Multiple Fano resonance modes in an ultra-compact plasmonic waveguide-cavity system for sensing applications. Results Phys. 27, 104527 (2021). https://doi.org/10.1016/j.rinp.2021.104527
    71. Rakhshani, M. R. Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics Nanostruct. 39, 100768 (2020). https://doi.org/10.1016/j.photonics.2020.100768
    72. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019).             https://doi.org/10.1016/j.rinp.2019.102420
    73. Ren, X., Ren, K. & Cai, Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl. Opt. 56, H1–H9 (2017). https://doi.org/10.1364/AO.56.0000H1
    74. Tang, Y. et al. Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17, 784 (2017). https://doi.org/10.3390/s17040784
    75. Yang, X., Hua, E., Su, H., Guo, J. & Yan, S. A nanostructure with defect based on Fano resonance for application on refractive-index and temperature sensing. Sensors 20, 4125 (2020).          https://doi.org/10.3390/s20154125
    76. Chen, Y. et al. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator. Opt. Laser Technol. 101, 273–278 (2018).            https://doi.org/10.1016/j.optlastec.2017.11.022
    77. Binfeng, Y., Ruohu, Z., Guohua, H. & Yiping, C. Ultra-sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 11, 1157–1162 (2016). https://doi.org/10.1007/s11468-015-0154-5
    78. Zhang, Q., Huang, X.-G., Lin, X.-S., Tao, J. & Jin, X.-P. A subwavelength coupler-type MIM optical filter. Opt. Express 17, 7549–7554(2009). https://doi.org/10.1364/OE.17.007549
    79. Rakhshani, M. R. Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing. Opt. Quantum Electron. 51, 287 (2019). https://doi.org/10.1007/s11082-019-2007-5
    80. Chen, F., Zhang, H., Sun, L., Li, J. & Yu, C. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 116, 293–299 (2019).                   https://doi.org/10.1016/j.optlastec.2019.03.044
    81. He, Y. et al. Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator. Opt. Quantum Electron. 52, 391 (2020). https://doi.org/10.1007/s11082-020-02513-3
    82. Dionne, J.  et al. A. Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010). https://doi.org/10.1109/JSTQE.2009.2034983
    83. Zhan, S. et al. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci. Rep. 6, 22428 (2016). https://doi.org/10.1038/srep22428
    84. Guo, Z. et al. Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors 18, 1348 (2018). https://doi.org/10.3390/s18051348
    85. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Multiple Fano resonances in a coupled plasmonic resonator system. J. Appl. Phys. 126, 083102 (2019). https://doi.org/10.1063/1.5105358
    86. Chen, Z., Song, X., Duan, G., Wang, L. & Yu, L. Multiple Fano resonances control in MIM side-coupled cavities systems. IEEE Photonics J. 7, 1–10 (2015).        https://doi.org/10.1109/JPHOT.2015.2433012
    87. Zhang, X. et al. Refractive Index Sensor based on Fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sens. 8, 367–374 (2018).      
      https://doi.org/10.1007/s13320-018-0509-6
    88. Yang, X. et al. Fano resonance in a MIM waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 19, 4972 (2019).   https://doi.org/10.3390/s19224972
    89. Wang, W.-D., Zheng, L. & Qi, J.-G. High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric nanocylinder dimer metamaterials. Appl. Phys. Express 12, 075002 (2019). https://doi.org/10.7567/1882-0786/ab206a
    90. Špačková, B., Wrobel, P., Bocková, M. & Homola, J. Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104, 2380–2408 (2016).               https://doi.org/10.1109/JPROC.2016.2624340
    91. Li, S. et al. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt. Express 25, 3525–3533 (2017). https://doi.org/10.1364/OE.25.003525
    92. Butt, M. A., Kazanskiy, N. L. & Khonina, S. N. Nanodots decorated asymmetric metal-insulator-metal waveguide resonator structure based on Fano resonances for refractive index sensing application. Laser Phys. 30, (2020).            https://doi.org/10.1088/1555-6611/ab9090 
    93. Chen, Z., Cao, X. & Song, X. Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11,
      307– 313 (2016). https://doi.org/10.1007/s11468-015-0035-y
    94. Wang, Y., Li, S., Zhang, Y. & Yu, L. Independently formed multiple Fano resonances for ultra-high sensitivity plasmonic nanosensor. Plasmonics 13, 107–113 (2018).         https://doi.org/10.1007/s11468-016-0489-6
    95. Chen, J. et al. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 482, 126563 (2021).      https://doi.org/10.1016/j.optcom.2020.126563
    96. Chen, J. et al. Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8, 1627–1631 (2013). https://doi.org/10.1007/s11468-013-9580-4
    97. Wen, K. et al. Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10, 27–32 (2015). https://doi.org/10.1007/s11468-014-9772-6
    98. Yang, J. et al. Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor. Plasmonics 12, 1665–1672 (2017).    
      https://doi.org/10.1007/s11468-016-0432-x
    99. Wen, K., Chen, L., Zhou, J., Lei, L. & Fang, Y. A Plasmonic chip-scale refractive index sensor design based on multiple Fano reso-nances. Sensors 18, 3181 (2018). https://doi.org/10.3390/s18103181
    100. Liu, Y. et al. Theoretical design of plasmonic refractive index sensor based on the fixed band detection. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019).       https://doi.org/10.1109/JSTQE.2018.2827661
    101. Qiao, L., Zhang, G., Wang, Z., Fan, G. & Yan, Y. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019). https://doi.org/10.1016/j.optcom.2018.09.055
    102. Xiao, G. et al. High sensitivity plasmonic sensor based on Fano resonance with inverted u-shaped resonator. Sensors 21, 1–12 (2021). https://doi.org/10.3390/s21041164
    103. Li, C. et al. Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor. IEEE Photonics J. 9, 1– 9 (2017).       https://doi.org/10.1109/JPHOT.2017.2763781
    104. Shi, X. et al. Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt. Commun. 427, 326–330 (2018).         https://doi.org/10.1016/j.optcom.2018.06.042
    105. Chen, Z. et al. Sensing characteristics based on Fano resonance in rectangular ring waveguide. Opt. Commun. 356, 373–377 (2015). https://doi.org/10.1016/j.optcom.2015.08.020
    106. Wang, M., Zhang, M., Wang, Y., Zhao, R. & Yan, S. Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19, 791 (2019). https://doi.org/10.3390/s19040791
    107. Yu, S., Zhao, T., Yu, J. & Pan, D. Tuning multiple fano resonances for on-chip sensors in a plasmonic system. Sensors 19, 1559 (2019). https://doi.org/10.3390/s19071559
    108. Rahmatiyar, M., Danaie, M. & Afsahi, M. Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt. Quantum Electron. 52, 153 (2020). https://doi.org/10.1007/s11082-020-02266-z
    109. Li, Z. et al. Manipulation of multiple Fano resonances based on a novel chip-scale MDM structure. IEEE Access 8, 32914–32921 (2020). https://doi.org/10.1109/ACCESS.2020.2973417
    110. Fang, Y. et al. Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photon. J. 11, 1–8 (2019).  https://doi.org/ 10.1109/JPHOT.2019.2914483
    111. Wang, Q., Ouyang, Z., Sun, Y., Lin, M. & Liu, Q. Linearly tunable Fano resonance modes in a plasmonic nanostructure with a  waveguide loaded with two rectangular cavities coupled by a circular cavity. Nanomaterials 9, 678 (2019).               https://doi.org/10.3390/nano9050678
    112. Su, H. et al. Sensing features of the Fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity. Appl. Sci. 10, 5096 (2020). https://doi.org/10.3390/app10155096 
    113. Wang, S., Zhao, T., Yu, S. & Ma, W. High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator system. IEEE Access 8, 40599–40611 (2020).   https://doi.org/10.1109/ACCESS.2020.2974491
    114. Li, Z. et al. Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system. IEEE Access 7, 59369–59375 (2019). https://doi.org/10.1109/ACCESS.2019.2914466
    115. El Haffar, R., Farkhsi, A. & Mahboub, O. Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A 126, 486 (2020).                                
      https://doi.org/10.1007/s00339-020-03660-w 
    116. Hassan, M. F., Hasan, M. M., Ahmed, M. I. & Sagor, R.H. Numerical investigation of a plasmonic refractive index sensor based on rectangular MIM topology. in 2020 International Seminar on Intelligent Technology and its Applications ISITIA 2020, 77–82 (IEEE, 2020). https://doi.org/10.1109/ISITIA49792.2020.9163755
    117. Wang, Y. et al. Design of sub wavelength-grating-coupled Fano resonance sensor in mid-infrared. Plasmonics 16, 463–469 (2021). https://doi.org/10.1007/s11468-020-01313-5
    118. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Double Fano resonances based on different mechanisms in a MIM plasmonic system. Photonics Nanostruct. 36, 100714 (2019).                    https://doi.org/10.1016/j.photonics.2019.100714
    119. Chen, Z., Chen, J., Yu, L. & Xiao, J. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator. Plasmonics 10, 131–137 (2015). https://doi.org/10.1007/s11468-014-9786-0
    120. Pang, S. et al. The sensing characteristics based on electro-magnetically-induced transparency-like response in double-sided stub and a nano-disk waveguide system. Mod. Phys. Lett. B 31, 1–9 (2017). https://doi.org/10.1142/S0217984917501019
    121. Zhang, Z. D. et al. Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12, 1007–1013 (2017). https://doi.org/10.1007/s11468-016-0352-9
    122. Akhavan, A., Ghafoorifard, H., Abdolhosseini, S. & Habibiyan, H. Metal-insulator-metal waveguide-coupled asymmetric resonators for sensing and slow light applications. IET Optoelectron. 12, 220–227 (2018). https://doi.org/10.1049/iet-opt.2018.0028
    123. Shi, H. et al. A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator. Micromachines 12, 495 (2021). https://doi.org/10.3390/mi12050495
    124. Meng, Z.-M. & Qin, F. Realizing prominent Fano resonances in metal-insulator-metal plasmonic Bragg gratings side-coupled with plasmonic nanocavities. Plasmonics 13, 2329–2336 (2018). https://doi.org/10.1007/s11468-018-0756-9
    125. Tathfif, I., Rashid, K.S., Yaseer, A. A. & Sagor, R.H. Alternative material titanium nitride based refractive index sensor embedded with defects: An emerging solution in sensing arena. Results Phys. 29, 104795 (2021). https://doi.org/10.1016/j.rinp.2021.104795
    126. Li, Q. et al. Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials. Adv. Mater. Technol. 5, 1–7 (2020). https://doi.org/10.1002/admt.201900840
    127. Ge, J. et al. Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance. Opt. Express 28, 31781–31795 (2020). https://doi.org/10.1364/OE.405348
       

Date

30.12.2021

Type

Reviews

Identifier

DOI: 10.24425/opelre.2021.139601
×