Tytuł artykułu

Effect of heat treatment on the surface morphology and optical properties of the Al2O3 thin film for use in solar cells

Tytuł czasopisma

Opto-Electronics Review








Szindler, Marek : Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 7 Towarowa St., 44-100 Gliwice, Poland ; Szindler, Magdalena M. : Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego St., 44-100 Gliwice, Poland


Słowa kluczowe

antireflection coating ; atomic layer deposition method ; solar cells

Wydział PAN

Nauki Techniczne




[1] Marks-Bielska, R. et al. The importance of renewable energy sources in Poland’s energy mix. Energies 13, 1–23 (2020). [2] Asfar, Y. et al. Evaluating Photovoltaic Performance Indoors. in 2012 38th IEEE Photovoltaic Specialists Conference (PVSC). 1948–1951 (IEEE, Austin, USA 2012). [3] Ranjan, S. et al. Silicon solar cell production. Comput. Chem. Eng. 35, 1439–1453 (2011). [4] Drygala, A. et al. Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon. Int. J. Hydrog. Energy 41, 7563–7567 (2016). [5] Hou, G., Garcia, I. & Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 217, 29–39 (2021). [6] Dobrzański, L. A., Szindler, M., Drygała, A. & Szindler, M.M., Silicon solar cells with Al2O3 antireflection coating. Cen. Eur. J. Phys. 12, 666–670 (2014). [7] Sarkar, S. & Pradhan, S. K. Silica-based antireflection coating by glancing angle deposition. Surf. Eng. 35, 982–985. (2019). [8] Szindler, M. Szindler, M. M., Boryło, P. & Jung, T. Structure and optical properties of TiO2 thin films deposited by ALD method. Open Phys. 15, 1067–1071 (2017). [9] Król, K. et al. Influence of atomic layer deposition temperature on the electrical properties of Al/ZrO2/SiO2/4H-SiC metal-oxide semiconductor structures. Phys. Status Solidi (A) 215, 1–7 (2018). [10] Boryło, P. et al. Structure and properties of Al2O3 thin films deposited by ALD proces. Vacuum 131, 319–326 (2016). [11] Drabczyk, K. et al. Comparison of diffused layer prepared using liquid dopant solutions and pastes for solar cell with screen printed electrodes. Microelectron. Int. 33, 167–171 (2016). [12] Öğütman, K. et al. Spatial atomic layer deposition of aluminum oxide as a passivating hole contact for silicon solar cells. Phys. Status Solidi (A) 217, 1–6 (2020). [13] Drabczyk, K. et al. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14–21 (2016). [14] Park, H. H. Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 11, 1–22 (2021). [15] Hossain, A. et al. Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials Sci. 2, 204–226 (2020). [16] Werner, F. et al. High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia 8, 301–306 (2011). [17] Werner, F., Cosceev, A. & Schmidt, J. Silicon surface passivation by Al2O3: Recombination parameters and inversion layer solar cells. Energy Procedia 27, 319–324 (2012). [18] Swatowska, B. Antireflective and passivation properties of the photovoltaic structure with Al2O3 layer of different thickness. Microelectron. Int. 35, 177–180 (2018).






DOI: 10.24425/opelre.2021.139602 ; ISSN 1896-3757