Details
Title
Influence of Geometric Structure, Convection, and Eddy on Sound Propagation in Acoustic Metamaterials with Turbulent FlowJournal title
Archives of AcousticsYearbook
2021Volume
vol. 46Issue
No 4Authors
Affiliation
Pak, Myong Chol : Department of Physics, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea ; Kim, Kwang-Il : Department of Physics, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea ; Pak, Hak Chol : Department of Physics, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of Korea ; Hong, Kwon Ryong : Institute of Natural Sciences, Kim Il Sung University, Taesong District, Pyongyang, Democratic People’s Republic of KoreaKeywords
acoustic metamaterial ; turbulent flow ; sound transmission loss ; eddy ; transportationDivisions of PAS
Nauki TechniczneCoverage
637-647Publisher
Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on AcousticsBibliography
1. Ananthan V., Bernicke P., Akkermans R., Hu T., Liu P. (2020), Effect of porous material on trailing edge sound sources of a lifting airfoil by zonal oversetles, Journal of Sound and Vibration, 480: 115386, doi: 10.1016/j.jsv.2020.115386.2. Bok E., Park J.J., Choi H., Han C.K., Wright O.B., Lee S.H. (2018), Metasurface for water-to-air sound transmission, Physical Review Letters, 120(4): 044302, doi: 10.1103/PhysRevLett.120.044302.
3. Brookea D.C., Umnova O., Leclaire P., Dupont T. (2020), Acoustic metamaterial for low frequency sound absorption in linear and nonlinear regimes, Journal of Sound and Vibration, 485: 115585, doi: 10.1016/j.jsv.2020.115585.
4. Carpio A.R., Avallone F., Ragni D., Snellen M., van der Zwaag S. (2019), Mechanisms of broadband noise generation on metal foam edges, Physics of Fluids, 31(10): 105110, doi: 10.1063/1.5121248.
5. Chaitanya P., Joseph P., Ayton L.J. (2020), Leading edge profiles for the reduction of airfoil interaction noise, AIAA Journal, 58(3): 1118–1129, doi: 10.2514/1.J058456.
6. Deuse M., Sandberg R.D. (2020), Different noise generation mechanisms of a controlled diffusion aerofoil and their dependence on Mach number, Journal of Sound and Vibration, 476: 115317, doi: 10.1016/j.jsv.2020.115317.
7. Du L., Holmberg A., Karlsson M., Åbom M. (2016), Sound amplification at a rectangular t-junction with merging mean flows, Journal of Sound and Vibration, 367: 69–83, doi: 10.1016/j.jsv.2015.12.042.
8. Fan L., Chen Z., Zhang S., Ding J., Li X., Zhang H. (2015), An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation, Applied Physics Letters, 106(15): 151908, doi: 10.1063/1.4918374.
9. Gikadi J., Föller S., Sattelmayer T. (2014), Impact of turbulence on the prediction of linear aeroacoustic interactions: Acoustic response of a turbulent shear layer, Journal of Sound and Vibration, 333(24): 6548–6559, doi: 10.1016/j.jsv.2014.06.033.
10. Gu Z., Gao H., Liu T., Li Y., Zhu J. (2020), Dopant-modulated sound transmission with zero index acoustic metamaterials, The Journal of the Acoustical Society of America, 148(3): 1636–1641, doi: 10.1121/10.0001962.
11. Jiang X., Li Y., Zhang L.K. (2017), Thermoviscous effects on sound transmission through a metasurface of hybrid resonances, The Journal of the Acoustical Society of America, 141(4): EL363–EL368, doi: 10.1121/1.4979682.
12. Jung J.W., Kim J.E., Lee J.W. (2018), Acoustic metamaterial panel for both uid passage and broadband soundproofing in the audible frequency range, Applied Physics Letters, 112(4): 041903, doi: 10.1063/1.5004605.
13. Kundu P.K., Cohen I.M., Dowling D. (2012), Fluid mechanics, 5th ed., pp. 564–571, Elsevier, doi: 10.1016/C2009-0-63410-3.
14. Kusano K., Yamada K., Furukawa M. (2020), Aeroacoustic simulation of broadband sound generated from low-Mach-number flows using a lattice Boltzmann method, Journal of Sound and Vibration, 467: 115044, doi: 10.1016/j.jsv.2019.115044.
15. Li Y., Assouar B.M. (2016), Acoustic metasurfacebased perfect absorber with deep subwavelength thickness, Applied Physics Letters, 108(6): 063502, doi: 10.1063/1.4941338.
16. Lu K., Wu J., Guan D., Gao N., Jing L. (2016), A lightweight low-frequency sound insulation membrane- type acoustic metamaterial, AIP Advances, 6(2): 025116, doi: 10.1063/1.4942513.
17. Menter F. (1994), Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32(8): 1598–1605, doi: 10.2514/3.12149.
18. Nardini M., Sandberg R.D., Schlanderer S.C. (2020), Computational study of the effect of structural compliance on the noise radiated from an elastic trailing-edge, Journal of Sound and Vibration, 485: 115533, doi: 10.1016/j.jsv.2020.115533.
19. Ostashev V.E., Wilson D.K. (2016), Acoustics in Moving Inhomogeneous Media, 2ed., pp. 27–62, Taylor and Francis, doi: 10.1201/b18922.
20. Park J.J., Park C.M., Lee K.J., Lee S.H. (2015), Acoustic superlens using membrane-based metamaterials, Applied Physics Letters, 106(5): 051901, doi: 10.1063/1.4907634.
21. Pierce A.D. (2019), Acoustics: An Introduction to Its Physical Principles and Applications, 3rd ed., pp. 68– 70, Springer, doi: 10.1007/978-3-030-11214-1.
22. Qu S., Sheng P. (2020), Minimizing indoor sound energy with tunable metamaterial surfaces, Physical Review Applied, 14(3): 034060, doi: 10.1103/PhysRevApplied.14.034060.
23. Romani G., Ye Q.Q., Avallone F., Ragni D., Casalino D. (2020), Numerical analysis of fan noise for the NOVA boundary-layer ingestion configuration, Aerospace Science and Technology, 96: 105532, doi: 10.1016/j.ast.2019.105532.
24. Su H., Zhou X., Xu X., Hu G. (2014), Experimental study on acoustic subwavelength imaging of holeystructured metamaterials by resonant tunnelling, The Journal of the Acoustical Society of America, 135(4): 1686–1691, doi: 10.1121/1.4868395.
25. Sui N., Yan X., Huang T.Y., Xu J., Yuan F.G., Jing Y. (2015), A lightweight yet sound-proof honeycomb acoustic metamaterial, Applied Physics Letters, 106(17): 171905, doi: 10.1063/1.4919235.
26. Szoke M., Fiscaletti D., Azarpeyvand M. (2018), Effect of inclined transverse jets on trailing-edge noise generation, Physics of Fluids, 30(8): 085110, doi: 10.1063/1.5044380.
27. Szoke M., Fiscaletti D., Azarpeyvand M. (2020), Uniform flow injection into a turbulent boundary layer for trailing edge noise reduction, Physics of Fluids, 32(8): 085104, doi: 10.1063/5.0013461.
28. Tang H., Lei Y.L., Li X.Z. (2019), An acoustic source model for applications in low Mach number turbulent flows, such as a large-scale wind turbine blade, Energies, 12(23): 4596, doi: 10.3390/en12234596.
29. Wang X., Zhao H., Luo X., Huang Z. (2016), Membrane-constrained acoustic metamaterials for low frequency sound insulation, Applied Physics Letters, 108(4): 041905, doi: 10.1063/1.4940717.
30. Wang Y., Thompson D., Hu Z. (2019), Effect of wall proximity on the flow over a cube and the implications for the noise emitted, Physics of Fluids, 31(7): 077101, doi: 10.1063/1.5096072.
31. Yang Z.J. et al. (2015), Topological acoustics, Physical Review Letters, 114(11): 114301, doi: 10.1103/Phys RevLett.114.114301.
32. Yao H., Davidson L. (2019), Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body, The Journal of the Acoustical Society of America, 145(5): 3163–3176, doi: 10.1121/1.5109548.
33. Zheng M.Y., Park C., Liu X.N., Zhu R., Hu G.K., Kim Y.Y. (2020), Non-resonant metasurface for broadband elastic wave mode splitting, Applied Physics Letters, 116(17): 171903, doi: 10.1063/5.0005408.