Details

Title

Numerical Methodology to Obtain the Sound Absorption of Materials by Inserting the Acoustic Impedance

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 4

Affiliation

Borges Mendes, Cláudia Ohana : Graduate Program in Engineering Materials Integrity, University of Brasília-UnB, College UnB Gama-FGA Área Especial de Indústria Projeção A, Setor Leste, CEP:72.444-240, Gama, Distrito Federal, Brazil ; De Araújo Nunes, Maria Alzira : Graduate Program in Engineering Materials Integrity, University of Brasília-UnB, College UnB Gama-FGA Área Especial de Indústria Projeção A, Setor Leste, CEP:72.444-240, Gama, Distrito Federal, Brazil

Authors

Keywords

impedance tube ; ANSYSR® ; finite element method ; sound absorption

Divisions of PAS

Nauki Techniczne

Coverage

649-656

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Bibliography

1. ASTM E1050:2019, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system.
2. ASTM E354:2003, Acoustics – measurement of sound absorption in a reverberation room.
3. Bóden H., Abom M. (1986), Influence of errors on the two-microphone method for measuring acoustic properties in ducts, The Journal of the Acoustical Society of America, 79(2): 541–549, doi: 10.1121/1.393542.
4. Ming-hui G., Qing-quan H., Jin-man W., Haipeng Y. (2010), The modeling and simulation analysis of wooden perforated panel absorption structure, Noise & Vibration Wordwide, 41(10): 72–75, doi: 10.1260/0957-4565.41.10.72.
5. Howard C.Q., Cazzolato B.S. (2014), Acoustic Analyses using MATLAB® and ANSYS®, Boca Raton: CRC Press, Taylor & Francis Group.
6. ISO 10534-1:1996, Acoustic – Determination of sound absorption coefficient and impedance in impedance tubes – Part 1: Method using standing wave ratio.
7. ISO 10534-2:1998, Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes. Part 2: Transfer-function method.
8. ISO 354:2003, Measurement of sound absorption in a reverberant room.
9. Kinsler L.E., Frey A.R., Coppens A.B., Sanders J.V. (2000), Fundamentals of Acoustics, Hoboken: John Wiley & Sons, New York.
10. Lara L.T., Boaventura W.C., Pasqual A.M. (2016), Improving the estimated acoustic absorption curves in impedance tubes by using wavelet-based denoising methods, Congresso Iberoamericano de Acústica, Buenos Aires, Argentina, 22, 1–10.
11. Maa D.Y. (1998), Potential of microperforated panel absorber, The Journal of the Acoustical Society of America, 104(5): 2861–2866, doi: 10.1121/1.423870.
12. Rienstra S.W., Hirschberg A. (2014), An Introduction to Acoustics, Eindhoven University of Technology, Netherlands.
13. Silva G.C.C., Nunes M.A.A., Almeida Jr A.B., Lopes R.V. (2013), Acoustic design and construction of an impedance tube for experimental characterization of sound absorbed materials [in Portuguese: Projeto Acústico e Construção de um Tubo de Impedância para Caracterização Experimental de Materiais com Absorção Sonora], [in:] XVIII Congresso de Iniciação Científica da UnB, Brasília, Brazil.
14. Soriano H.L. (2009), Finite Elements – Formulation and Application in Static and Dynamic Structures [in Portuguese: Elementos Finitos – Formulação e Aplicação na Estática e Dinâmica das Estruturas], Rio de Janeiro: Editora Ciência Moderna Ltda.

Date

2021.12.22

Type

Article

Identifier

DOI: 10.24425/aoa.2021.139641
×