Effectiveness of Dynamic Matrix Control algorithm with Laguerre functions

Journal title

Archives of Control Sciences




vol. 31


No 4


Tatjewski, Piotr : Warsaw University of Technology, Nowowiejska15/19, 00-665 Warszawa, Poland



process control ; model predictive control ; DMC algorithm ; Laguerre functions

Divisions of PAS

Nauki Techniczne




Committee of Automatic Control and Robotics PAS


[1] T.L. Blevins, G.K. McMillan, W.K. Wojsznis, and M.W. Brown: Advanced Control Unleashed. The ISA Society, Research Triangle Park, NC, 2003.
[2] T.L. Blevins,W.K.Wojsznis and M.Nixon: Advanced ControlFoundation. The ISA Society, Research Triangle Park, NC, 2013.
[3] E.F. Camacho and C. Bordons: Model Predictive Control. Springer Verlag, London, 1999.
[4] M. Ławrynczuk: Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach, Studies in Systems, Decision and Control. Vol. 3. Springer Verlag, Heidelberg, 2014.
[5] M. Ławrynczuk: Nonlinear model predictive control for processes with complex dynamics: parametrisation approach using Laguerre functions. International Journal of Applied Mathematics and Computer Science, 30(1), (2020), 35–46, DOI: 10.34768/amcs-2020-0003.
[6] J.M. Maciejowski: Predictive Control. Prentice Hall, Harlow, England, 2002.
[7] R. Nebeluk and P. Marusak: Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors. Archives of Control Sciences, 30(2), (2020), 325–363, DOI: 10.24425/acs.2020.133502.
[8] S.J. Qin and T.A.Badgwell:Asurvey of industrial model predictive control technology. Control Engineering Practice, 11(7), (2003), 733–764, DOI: 10.1016/S0967-0661(02)00186-7.
[9] J. B. Rawlings and D. Q. Mayne: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison, 2009.
[10] J.A. Rossiter: Model-Based Predictive Control. CRC Press, Boca Raton – London – New York – Washington, D.C., 2003.
[11] P. Tatjewski: Advanced Control of Industrial Processes. Springer Verlag, London, 2007.
[12] P. Tatjewski: Advanced control and on-line process optimization in multilayer structures. Annual Reviews in Control, 32(1), (2008), 71–85, DOI: 10.1016/j.arcontrol.2008.03.003.
[13] P. Tatjewski: Disturbance modeling and state estimation for offset-free predictive control with state-spaced process models. International Journal of Applied Mathematics and Computer Science, 24(2), (2014), 313–323, DOI: 10.2478/amcs-2014-0023.
[14] P. Tatjewski: Offset-free nonlinear Model Predictive Control with statespace process models. Archives of Control Sciences, 27(4), (2017), 595–615, DOI: 10.1515/acsc-2017-0035.
[15] P. Tatjewski: DMC algorithm with Laguerre functions. In Advanced, Contemporary Control, Proceedings of the 20th Polish Control Conference, pages 1006–1017, Łódz, Poland, (2020).
[16] G. Valencia-Palomo and J.A. Rossiter: Using Laguerre functions to improve efficiency of multi-parametric predictive control. In Proceedings of the 2010 American Control Conference, Baltimore, (2010).
[17] B. Wahlberg: System identification using the Laguerre models. IEEE Transactions on Automatic Control, 36(5), (1991), 551–562, DOI: 10.1109/9.76361.
[18] L. Wang: Discrete model predictive controller design using Laguerre functions. Journal of Process Control, 14(2), (2004), 131–142, DOI: 10.1016/S0959-1524(03)00028-3.
[19] L. Wang: Model Predictive Control System Design and Implementation using MATLAB. Springer Verlag, London, 2009.
[20] R. Wood and M. Berry: Terminal composition control of a binary distillation column. Chemical Engineering Science, 28(9), (1973), 1707–1717, DOI: 10.1016/0009-2509(73)80025-9.






DOI: 10.24425/acs.2021.139731