Tytuł artykułu

Study on the ankle rehabilitation device

Tytuł czasopisma

Archive of Mechanical Engineering


Ahead of print


Duc Dao, Minh : Faculty Technology and Engineering, The Pham Van Dong University, Quang Ngai, Vietnam ; Tran, Xuan Tuy : Faculty Technology of Mechanical Engineering, The University of Danang – University of Science and Technology, Danang, Vietnam ; Pham, Dang Phuoc : Faculty Technology and Engineering, The Pham Van Dong University, Quang Ngai, Vietnam ; Ngo, Quoc Anh : Faculty Technology and Engineering, The Pham Van Dong University, Quang Ngai, Vietnam ; Le, Thi Thuy Tram : The Faculty Electronic-Electrical, The Quang Nam College, Quang Nam, Vietnam


Słowa kluczowe

ankle ; rehabilitation ; stroke ; slide mode controller ; linear actuator

Wydział PAN

Nauki Techniczne


Polish Academy of Sciences, Committee on Machine Building


[1] E. Osayande, K.P. Ayodele, M.A. Komolafe. Development of a robotic hand orthosis for stroke patient rehabilitation. International Journal of Online and Biomedical Engineering, 16(13):142–149, 2020. doi: 10.3991/ijoe.v16i13.13407.
[2] Z. Yue, X. Zhang, and J. Wang. Hand Rehabilitation robotics on poststroke motor recovery. Behavioural Neurology, 2017:3908135, 2017. doi: 10.1155/2017/3908135.
[3] C. Grefkes and G.R. Fink. Recovery from stroke: current concepts and futures perspectives. Neurological Research and Practice, 2(1):17, 2020. doi: 10.1186/s42466-020-00060-6.
[4] R. Gassert and V. Dietz. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Journal of NeuroEngineering and Rehabilitation, 15:46, 2018. doi: 10.1186/s12984-018-0383-x.
[5] S.H. Hayes and S.R. Carroll. Early intervention care in the acute stroke patient. Archives of Physical Medicine and Rehabilitation, 67(5):319–321, 1986.
[6] D.U. Jette, R.L. Warren, and C. Wirtalla. The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Archives of Physical Medicine and Rehabilitation, 86(3):373–379, 2005. doi: 10.1016/j.apmr.2004.10.018.
[7] Z. Zhou and Q. Wang. Concept and prototype design of a robotic ankle-foot rehabilitation system with passive mechanism for coupling motion. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pages 1002–1005, Suzhou, China, 29 July -2 August, 2019. doi: 10.1109/cyber46603.2019.9066745.
[8] C.M. Racu and I. Doroftei. An overview on ankle rehabilitation devices. Advanced Materials Research, 1036:781–786, 2014. doi: 10.4028/
[9] A.A. Blank, J.A. French, A.U. Pehlivan, and M.K. O'Malley. Rehabilitation: Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Current Physical Medicine and Rehabilitation Reports, 2(3):184–195, 2014.
[10] Z. Liao, L. Yao, Z. Lu, and J. Zhang. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology. International Journal of Intelligent Robotics and Applications, 2(3):351–360, 2018. doi: 10.1007/s41315-018-0063-9.
[11] C.C.K. Lin, M.S. Ju, S.M. Chen, and B.W. Pan. A specialized robot for ankle rehabilitation and evaluation. Journal of Medical and Biological Engineering, 28(2):79–86, 2008.
[12] Z. Sun et al. Mechanism Design and ADAMS-MATLAB-Simulation of a Novel Ankle Rehabilitation Robot. 2019 IEEE International Conference on Robotics and Biomimetic (ROBIO), pages 425–432, Dali, China, December, 2019. doi: 10.1109/robio49542.2019.8961829.
[13] Q. Liu, A. Liu, W. Meng, Q. Ai, and S.Q. Xie. Hierarchical compliance control of a soft ankle rehabilitation robot actuated by pneumatic muscles. Frontiers in Neurorobotics, 11:64, 2017. doi: 10.3389/fnbot.2017.00064.
[14] T. Yonezawa, K. Nomura, T. Onodera, S. Ishimura, H. Mizoguchi, and H. Takemura. Evaluation of venous return in lower limb by passive ankle exercise performed by PHARAD. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3582–3585, Milan, Italia, 25–29 August, 2015. doi: 10.1109/embc.2015.7319167.
[15] Ye Ding, M. Sivak, B. Weinberg, C. Mavroidis, and M.K. Holden. NUVABAT: Northeastern university virtual ankle and balance trainer. 2010 IEEE Haptics Symposium, pages 509–514, Waltham, Massachusetts, USA, 25–26 March, 2010. doi: 10.1109/haptic.2010.5444608.
[16] D. Ao, R. Song, and J. Gao. Movement performance of human–robot cooperation control based on emg-driven hill-type and proportional models for an ankle power-assist exoskeleton robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8):1125–1134, 2017. doi: 10.1109/tnsre.2016.2583464.
[17] Y. Ren, Y.-N. Wu, C.-Y. Yang, T. Xu, R. L. Harvey, and L.-Q. Zhang. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6):589–596, 2017. doi: 10.1109/tnsre.2016.2584003.
[18] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, and A. Goswami. Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. The International Journal of Robotics Research, 30(4):486–499, 2011. doi: 10.1177/0278364910385730.
[19] Z. Zhou, Y. Sun, N. Wang, F. Gao, K. Wei, and Q. Wang. Robot-assisted rehabilitation of ankle plantar flexors spasticity: a 3-month study with proprioceptive neuromuscular facilitation. Frontiers in Neurorobotics, 10:16, 2016. doi: 10.3389/fnbot.2016.00016.
[20] I. Doroftei, C.M. Racu, C. Honceriu, and D. Irimia. One-degree-of freedom ankle rehabilitation platform. IOP Conference Series: Materials Science and Engineering, 591:012076, 2019. doi: 10.1088/1757-899x/591/1/012076.
[21] A. Gmerek and E. Jezierski. Admittance control of a 1-DoF robotic arm actuated by BLDC motor. 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR), pages 633–638, Miedzyzdroje, Poland, 27–30 August, 2012. doi: 10.1109/mmar.2012.6347811.
[22] Ł. Woliński. Comparison of the adaptive and neural network control for LWR 4+ manipulators: simulation study. Archive of Mechanical Engineering, 67(1):111–121, 2020. doi: 10.24425/ame.2020.131686.
[23] Meera C S, M.K. Gupta, and S. Mohan. Disturbance observer-assisted hybrid control for autonomous manipulation in a robotic backhoe. Archive of Mechanical Engineering, 66(2):153–169, 2019. doi: 10.24425/ame.2019.128442.
[24] O. Jedda, J. Ghabi and A. Douik. Sliding mode control of an inverted pendulum. In: Derbel N., Ghommam J., Zhu Q. (eds), Applications of Sliding Mode Control. Studies in Systems, Decision and Control, chapter 6:105–118, 2016, Springer. doi: 10.1007/978-981-10-2374-3_6.
[25] S. Singh, M.S. Qureshi, and P. Swarnkar. Comparison of conventional PID controller with sliding mode controller for a 2-link robotic manipulator. 2016 International Conference on Electrical Power And Energy System (ICEPES), pages 115–119, Bhopal, India, 14-16 December, 2016. doi: 10.1109/icepes.2016.7915916.
[26] P. Boscariol and D. Richiedei. Trajectory design for energy savings in redundant robotic cells. Robotics, 8(1):15, 2019. doi: 10.3390/robotics8010015.
[27] M. Adolphe, J. Clerval, Z. Kirchof, R. Lacombe-Delpech, and B. Zagrodny. Center of mass of human's body segments, Mechanics and Mechanical Engineering, 21(3):485–497, 2017.
[28] T. Eiammanussakul and V. Sangveraphunsiri. A lower limb rehabilitation robot in sitting position with a review of training activities. Journal of Healthcare Engineering, 2018:927807, 2018. doi: 10.1155/2018/1927807.
[29] A. Roy, H.I. Krebs, C.T. Bever, L.W. Forrester, R.F. Macko, and N. Hogan. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot. Journal of Neurophysiology, 105(5):2132–2149, 2011. doi: 10.1152/jn.01014.2010.
[30] F. Gao, Y. Ren, E.J. Roth, R. Harvey, and L.-Q. Zhang. Effects of repeated ankle stretching on calf muscle–tendon and ankle biomechanical properties in stroke survivors. Clinical Biomechanics, 26(5):516–522, 2011. doi: 10.1016/j.clinbiomech.2010.12.003.
[31] G. Bucca, A. Bezzolato, S. Bruni and F. Molteni. A Mechatronic Device for the Rehabilitation of Ankle Motor Function. Journal of Biomechanical Engineering, 131(12):125001, 2009. doi: 10.1115/1.4000083.
[32] J. Zhong, Y. Zhu, C. Zhao, Z. Han, and X. Zhang. Position tracking of a pneumatic-muscle-driven rehabilitation robot by a single neuron tuned pid controller. Complexity, 2020:438391, 2020. doi: 10.1155/2020/1438391.




Ahead of print


DOI: 10.24425/ame.2021.139803 ; ISSN 0004-0738, e-ISSN 2300-1895


The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers of volume 68 (2021)
Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China