Szczegóły

Tytuł artykułu

Optimal tuning procedure for FOPID controller of integrated industrial processes with deadtime

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2022

Wolumin

70

Numer

1

Afiliacje

Anuja, R. : Arunachala College of Engineering For Women, India ; Sivarani, T.S. : Arunachala College of Engineering For Women, India ; Germin Nisha, M. : St. Xavier’s Catholic College of Engineering, India

Autorzy

Słowa kluczowe

industrial process integrated with dead time ; tuning of FOPID ; whale optimization algorithm

Wydział PAN

Nauki Techniczne

Zakres

e139954

Bibliografia

  1.  A. Tepljakov, “Fractional-order Modeling and Control of Dynamic Systems”, Ph.D. Thesis, Dept. Comput. Syst., Tallinn University of Technology, Tallinn, Estonia, 2017.
  2.  J.C. Shen, “New tuning method for PID controller”, ISA Trans., vol. 41, no. 4, pp. 473–484, 2002, doi: 10.1016/S0019-0578(07)60103-7.
  3.  G.M. Malwatkara, S.H. Sonawane, and L.M. Waghmare, “Tuning PID Controllers for higher order oscillatory systems with improved performance”, ISA Trans., vol. 48, pp. 347–353, 2009, doi: 10.1016/S0019-0578(07)60103-7.
  4.  R. Rajesh, “Optimal tuning of FOPID controller based on PSO algorithm with reference model for a single conical tank system”, SN Appl. Sci., vol. 1, p. 758, 2019, doi: 10.1007/s42452-019-0754-3.
  5.  A. Tepljakov, E. Petlenkov, J. Belikov, and E.A. Gonzalez, “Design of retuning fractional PID controllers for a closed loop magnetic levitation control system”, Proc. 13th Int. Conf. Control, Automation, Robotics and Vis., 2014, pp. 1345–1350, doi: 10.1109/ICARCV.2014.7064511.
  6.  M. Zhang and G. Wang, “Study on integrating process with dead time”, Proc. 29th Chinese Control Conf., 2010, pp. 207–209.
  7.  F. Peterle, M. Rampazzo, and A. Beghi, “Control of second order processes with dead time: the predictive PID solutions”, IFAC Papers Online, vol. 51, no. 4, pp. 793–798, 2018, doi: 10.1016/j.ifacol.2018.06.183.
  8.  I. Podlubny, “Fractional-order systems and PIλDµ-controllers”, IEEE Trans. Autom. Control, vol. 44, no. 1, pp. 208–214, Jan 1999, doi: 10.1109/9.739144.
  9.  I. Podlubny, L. Dorcák, and I. Kostial, “On fractional derivatives, fractional-order dynamic systems and PIλDµ-controllers”, Proc. 36th IEEE Conf. on Decision and Control, 1997, vol. 5, pp. 4985–4990.
  10.  Z. Bingul and O. Karahan, “Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay”, Optim. Control Appl. Methods, vol. 39, no. 5, pp. 1581–1596, 2018, doi: 10.1002/oca.2419.
  11.  M. Cech and M .Schlegel, “The fractional-order PID controller outperforms the classical one”, Conf. Process Control, pp. 1–6, 2006.
  12.  C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, and V. Feliu, “Fractional-Order Systems and Controls: Fundamentals and Applications”, in Advances in Industrial Control, 2010, doi: 10.1007/978-1-84996-335-0.
  13.  D. Valerio and J. Costa, “A review of tuning methods for fractional PIDs”, in Preprint 4th IFAC Workshop on Fractional Differentiation and its Applications, 2010.
  14.  M. Buslowicz, “Stability conditions for linear continuous time fractional order state delayed systems”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 1, pp. 3–7, 2016, doi: 10.1515/bpasts-2016-0001.
  15.  C. Ionesai and D. Copot, “Hands on MPC tuning for industrial application”, Bull. Pol. Acad. Sci. Tech. Sci., vol 67, no. 5, pp. 925–945, 2019, doi: 10.24425/bpasts.2019.130877.
  16.  D. Mozyrska, P. Ostalczyk and M. Wyrwas, “Stability conditions for fractional-order linear equations with delays”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 4, pp. 449–454, 2018, doi: 10.24425/124261.
  17.  W. Jakowluk, “Optimal input signal design for fractional-order system identification”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 3744, 2019, doi: 10.24425/bpas.2019.127336.
  18.  J. Klamka, J. Wyrwal and R. Zawiski, “On controllability of second order dynamical system survey”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 3, pp. 279–295, 2017, doi: 10.1515/bpasts-2017-0032.
  19.  S. Das, S. Saha, S. Das, and A. Gupta, “On the selection of tuning methodology of FOPID controllers for the control of higher order processes”, ISA Trans., vol. 50, no. 3, pp. 376–388, 2011, doi: 10.1016/j.isatra.2011.02.003.
  20.  H. Gozde and M.C. Taplamacioglu, “Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system”, J. Franklin Inst., vol. 348, no. 8, pp. 1927–1946, 2011, doi: 10.1016/j.jfranklin.2011.05.012.
  21.  D.L. Zhang, Y.G. Tang, and X.P. Guan, “Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm”, Acta Auto. Sin., vol. 40, no. 5, pp. 973–979, 2014, doi: 10.1016/S1874-1029(14)60010-0.
  22.  S. Das, I. Pan, S. Das, and A. Gupta, “A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices”, Eng. Appl. Artif. Intel., vol. 25, no. 2, pp. 430–442, Mar. 2012, doi: 10.1016/j.engappai.2011.10.004.
  23.  L. Liu, “Optimization design on fractional order PID controller based on adaptive particle swarm Optimization algorithm”, Nonlinear Dyn., vol. 84, pp. 379–386, 2016, doi: 10.1007/s11071015-2553-8.
  24.  M. Seyedali and L. Andrew, “The whale optimization algorithm”, Adv. Eng. Soft., vol. 95, pp. 51–67, 2016, doi: 10.1016/j.advengsoft.2016.01.008.
  25.  R.S. Preeti, H. Prakash Kumar, and P. Sidhartha, “Power system stability enhancement by fractional order multi input SSSC based controller employing whale optimization algorithm”, J. Electr. Syst. Inf. Technol., vol. 5, no. 3, pp. 326–2018, doi: 10.1016/j.jesit.2018.02.008.

Data

25.02.2022

Typ

Article

Identyfikator

DOI: 10.24425/bpasts.2021.139954 ; ISSN 2300-1917
×