Numerical analysis of storey-to-storey fire spreading

Journal title

Archives of Civil Engineering




vol. 68


No 1


Schabowicz, Krzysztof : Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland ; Sulik, Paweł : Instytut Techniki Budowlanej, Filtrowa 1, 00-611 Warsaw, Poland ; Gorzelańczyk, Tomasz : Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland ; Zawiślak, Łukasz : Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland



fire ; the leap-frog effect ; façades ; fire safety ; large scale facade test ; storey-to-storey fire spreading

Divisions of PAS

Nauki Techniczne






[1] EN 13501-1:2019-02. Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests.
[2] M. Bonner, G. Rein, “Flammability and multi-objective performance of building: towards optimum design”, International Journal of High-Rise Buildings, 2018, vol. 7, pp. 363–374, DOI: 10.21022/IJHRB.2018.7.4.363.
[3] K. Livkiss, S. Svensson, “Flame Heights and Heat Transfer in Façade System Ventilation Cavities”, Fire Technology, 2018, no 54, pp. 689–713, DOI: 10.1007/s10694-018-0706-2.
[4] D.I. Kolaitis, E.K. Asimakopoulou, M.A. Founti, “A Full-scale fore test to investigate the fire behaviour of the “ventilated facade” system”, in Interflam 2016, Windsor, 2016.
[5] S. Colwell, T. Baker, Fire Performance of external thermal insulation for walls of multistorey buildings, 3rd ed., Garston: IHS BRE Press, 2013.
[6] S. Boström, D. McNamee, “Fire test of ventilated and unventilated wooden facades”, SP Report 2016:16, Boras, 2016.
[7] J. Anderson, R. Jensson, “Experimental and numerical investigation of fire”, in Fire Computer Modeling Santander, 18-19th October 2012, Spain, 2012.
[8] J. Andersson, L. Boström, R. Jansson McNamee, “Fire Safety of Facades”, RISE Research Institutes of Sweden, SP Rapport 2017:37, Brandforsk 2017:3.
[9] R. Rogan, E. Shipper, ASTM Leap Frog Effect. The design and analysis of a computer fire model to test for flame spread through a building’s exterior, 2010.
[10] BS 8414-1:2015¸A1:2017 Fire performance of external cladding systems. Test method for non-loadbearing external cladding systems applied to the masonry face of a building, Building Research Establishment.
[11] PN-90/B-02867:1990¸Az1:2001 Fire protection of buildings. The method of testing the degree of fire spread through walls (in Polish).
[12] EOTA No 761/PP/GRO/IMA/19/1133/11140, European Commision, 2019.
[13] ISO 13785-2:2002 Reaction-to-fire tests for façades – Part 2: Large-scale test.
[14] M. Smolka, E. Anselmi, T. Crimi, B. Le Madec, I.F. Moder, K.W. Park, R. Rupp, Y.-H. Yoo, H. Yoshioka, “Semi-natural test methods to evaluate fire safety ofwall claddings:Update”, inMATECWeb of Conferences, 2016, vol. 46, DOI: 10.1051/matecconf/20164601003.
[15] D. Chen, S.M. Lo,W. Lu, K.K. Yuen, Z. Fang, “A numerical study of the effect of window configuration on the external heat and smoke spread in building fire”, Numerical Heat Transfer, 2001, no. 40, pp. 821–839, DOI: 10.1080/104077801753344286.
[16] M. Ibrahim, A.M. Sharaf Eldin, M. Ayoub, “Effect ofWindow Configurations on Fire Spread in Buildings”, in 11th International Energy Conversion Engineering Conference, 2013, DOI: 10.2514/6.2013-3947.
[17] I. Oleszkiewicz, “Heat transfer from a window fire plume to a building facade”, ASME HTD, 1989, vol. 123, pp. 163–170, DOI: 10.4224/40001813.
[18] I. Korrhoff, “ETICS and fire safety Basic principles and framework conditions”, in Third ETICS Forum, Milan, 2015.
[19] J. Anderson, L. Boström, R. Jansson McNamee, B. Milovanovic, “Modeling of fire exposure in facade fire testing”, Fire and Materials, 2018, vol. 42, pp. 475–483, DOI: 10.1002/fam.2485.
[20] SP FIRE 105. Method for fire testing of façade materials, Department of Fire Technology, Swedish National Testing and Research Institute, 1994.
[21] ISO 13785-2:2002 Reaction-to-fire tests for façades – Part 2: Large-scale test, International Organization for Standardization.
[22] W.K. Chow, W.Y. Hung, Y. Gao, G. Zou, H. Dong, “Experimental study on smoke movement leading to glass damages in double-skinned facade”, Construction and Building Materials, 2007, vol. 21, no. 3, pp. 556–566, DOI: 10.1016/j.conbuildmat.2005.09.005.
[23] Z. Ni, S. Lu, L. Peng, “Experimental study on fire performance of double-skin glass facades”, Journal of Fire Sciences, 2012, vol. 30, no. 5, pp. 457–472, DOI: 10.1177/0734904112447179.
[24] I. Kotthoff, “Mechanismen der Brandausbreitung an der Gebäudeaußenwand, Brandverhalten von WDVS unter besonderer Berücksichtigung von Polystyrol-Hartschaum”, in 9. Hessischer Energieberatertag, Frankfurt, 2012.
[25] F. Incropera, D. DeWitt, T. Bergman, A. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, 2007.
[26] M. Hurley, SFPE Handbook of Fire Protection Engineering, 5th ed., vol. 1, Springer New York, 2016.
[27] J. Degler, A. Ellasson, J. Anderson, D. Lange, “A-priopri modelling of the tisova fire test as input to the experimentalwork”, in The First International Conference on Structural Safety under Fire&Blast, Glasgow, 2015.
[28] K. McGrattan, S. Hostikka, J. Floyd, R. McDermott, M. Vanella, Fire Dynamics Simulator Technical Reference Guide Volume 3: Validation, NIST Special Publication 1018-3, 6th ed., National Institute of Standards and Technology and VTT Technical Research Centre of Finland, 2019.
[29] C.H. Lin, Y. M. Ferng, W.S. Hsu, “Investigating the effect of computational grid sizes on the predicted characteristics of thermal radiation for a fire”, Applied Thermal Engineering, 2009, vol. 29, pp. 2243–2250, DOI: 10.1016/j.applthermaleng.2008.11.010.
[30] P. Sulik, J. Kinowski, “Operational safety of façades" (in Polish), Materiały Budowlane, 2014, no. 9, pp. 38–39.
[31] B. Sedłak, J. Kinowski, P. Sulik, G. Kimbar, “The risks associated with falling parts of glazed façades”, Open Engineering, 2018, vol. 8, pp. 147–155, DOI: 10.1515/eng-2018-0011.
[32] J. Kinowski, B. Sedłak, P. Roszkowski P. Sulik, “The effect of the way of fixing exterior wall cladding on its behaviour in fire conditions” (in Polish), Materiały Budowlane, 2018, no. 8, pp. 204–205.






DOI: 10.24425/ace.2022.140158