Details

Title

Parametric analysis of mast guys within the elastic and inelastic range

Journal title

Archives of Civil Engineering

Yearbook

2022

Volume

vol. 68

Issue

No 1

Affiliation

Matuszkiewicz, Monika : Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Sniadeckich 2, 75-453 Koszalin, Poland ; Pigoń, Renata : Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Sniadeckich 2, 75-453 Koszalin, Poland

Authors

Keywords

experimental studies of cables ; geometric nonlinearity ; global static analysis ; mast guys ; physical nonlinearity

Divisions of PAS

Nauki Techniczne

Coverage

169-187

Publisher

WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES

Bibliography

[1] Eurocode 3. EN 1993-3-1: Design of steel structures. Part 3–1: Towers, masts and chimneys – Towers and masts. CEN Brussels 2006.
[2] S.A. Sadrnejad, “Numerical solution of base shear in high tensioned cable antenna”, Numerical Methods in Civil Engineering, 2016, vol. 1, no. 2, pp. 21–30, http://nmce.kntu.ac.ir/article-1-24-en.html.
[3] M. Matuszkiewicz, R. Orzłowska, “The influence of the second order effects on the results of computations of guyed masts with lattice shaft” (in Polish), Inzynieria i Budownictwo, 2017, no. 6, pp. 329–332.
[4] Sz. Pałkowski, Cable structures. Warszawa: WNT, 1994.
[5] Y.B. Yang, J.Y. Tsay, “Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method”, International Journal of Structural Stability and Dynamics, 2007, vol. 7, no. 4, pp. 571–588, DOI: 10.1142/S0219455407002435.
[6] H. Shi, H. Salim, “Geometric nonlinear static and dynamic analysis of guyed towers using fully nonlinear element formulations”, Engineering Structures, 2015, vol. 99, pp. 492–501, DOI: 10.1016/j.engstruct.2015.05.023.
[7] P.M. Páez, B. Sensale, “Analysis of guyed masts by the stability functions based on the Timoshenko beamcolumn”, Engineering Structures, 2017, vol. 152, pp. 597–606, DOI: 10.1016/j.engstruct.2017.09.036.
[8] Sz. Pałkowski, “Zur statischen Berechnung von Seilkonstruktionen im elastisch-plastischen Bereich”, Bauingenieur, 1992, no. 67, pp. 359–364.
[9] M. Matuszkiewicz, “Computations of cable structures in the elastic-plastic range” (in Polish), Inzynieria i Budownictwo, 2003, no. 7, pp. 393–396.
[10] F. Foti, A. de Luca di Roseto, “Analytical and finite element modeling of the elastic-plastic behaviour of metallic strands under axial-torsional loads”, International Journal of Mechanical Sciences, 2016, vol. 115– 116, pp. 202–214, DOI: 10.1016/j.ijmecsci.2016.06.016.
[11] F. Meng, Y. Chen, M. Du, X. Gong, “Study on effect of inter-wire contact on mechanical performance of wire rope strand based on semi-analytical method”, International Journal of Mechanical Sciences, 2016, vol. 115–116, pp. 416–427, DOI: 10.1016/j.ijmecsci.2016.07.012.
[12] Y.A. Onur, “Experimental and theoretical investigation of prestressing steel strand subjected to tensile load”, International Journal of Mechanical Sciences, 2016, vol. 118, pp. 91–100, DOI: 10.1016/j.ijmecsci.2016.09.006
[13] B. Liang, Z. Zhao, X. Wu, H. Liu, “The establishment of a numerical model for structural cables including friction”, Journal of Constructional Steel Research, 2017, vol. 139, pp. 424–436, DOI: 10.1016/j.jcsr.2017.09.031.
[14] R. Pigon, “Experimental study of mechanical properties of steel cables”, in The 2nd Baltic Conference for Students and Young Researches (BalCon 2018), 20-23 April 2018, Gdynia, Poland. MATEC Web of Conferences, 2018, vol. 219, no. 02004, DOI: 10.1051/matecconf/201821902004.
[15] GmbH, Pfeifer Seil – und Hebetechnik. Pfeifer Tension Members. 2015, no. 10. https://www.pfeifer.info/out/assets/PFEIFER_TENSION-MEMBERS_BROCHURE_EN.PDF
[16] PN-EN 12385-1 ¸ A1: Steel wire ropes. Safety. Part 1: General requirements. Warszawa: Polski Komitet Normalizacyjny, 2009.
[17] PN-EN 13411-4: Terminations for steel wire ropes. Safety. Part 4: Metal and resin socketing. Warszawa: Polski Komitet Normalizayjny, 2013.
[18] Millfield Enterprises (Manufacturing) Limited, WIRELOCK. Technical data manual. 2017. [Online]. https://www.wirelock.com/wp-content/uploads/2016/02/Wirelock-Technical-Data-Manual-2-11-17.pdf
[19] PN ISO 3108: Steel wire ropes for general purposes. Determination of actual breaking load. Warszawa: Polski Komitet Normalizacyjny, 1996.
[20] Eurocode 3. PN-EN 1993-1-11: Design of steel structures. Part 1–11: Design of structures with tension components. Warszawa: Polski Komitet Normalizacyjny, 2008.
[21] Chr. Petersen, Stahlbau. Vieweg, Braunschweig/Wiesbaden, 1993.
[22] U. Peil, “Bauen mit Seilen”, in Stahlbau-Kalender. 2000, pp. 690–755.
[23] A. Der Kiureghian, J.L. Sackman, “Tangent geometric stiffness of inclined cables under self-weight”. Journal of Structural Engineering ASCE, 2005, vol. 131, no. 6, pp. 941–945, DOI: 10.1061/(ASCE)0733-9445(2005)131:6(941).
[24] SOFiSTiK 2016 FEA. Oberschleissheim, Germany 2016.
[25] Eurocode 1. PN-EN 1991-1-4: Actions on structures. Part 1–4: General actions – Wind actions. Warszawa: Polski Komitet Normalizacyjny, 2008.

Date

2022.03.30

Type

Article

Identifier

DOI: 10.24425/ace.2022.140162
×