Details

Title

Inter-harmonic parameter identification method based on transform with local maximum spectrum

Journal title

Archives of Electrical Engineering

Yearbook

2022

Volume

vol. 71

Issue

No 1

Authors

Affiliation

Sun, Lin : Wuchang University of Technology, China ; Song, Jing : National University of Defense Technology, China ; Jin, Yan : Wuchang University of Technology, China

Keywords

inter-harmonic ; parameter identification ; power system ; synchrosqueezed transform,time-frequency analysis

Divisions of PAS

Nauki Techniczne

Coverage

189-209

Publisher

Polish Academy of Sciences

Bibliography

[1] Hou C., Zhu M., Chen Y., Cai X., Pre-filter phase-locked loop: principles and effects with inter- harmonic perturbation, IET Renewable Power Generation, vol. 14, no. 16, pp. 3088–3096 (2020), DOI: 10.1049/iet-rpg.2020.0448.

[2] Jove E., Gonzalev C.J.M., Casteleiro R.J.L. et al., An intelligent system for harmonic distortions detection in wind generator power electronic devices, Neurocomputing, vol. 456, pp. 609–621 (2021), DOI: 10.1016/j.neucom.2020.07.155.

[3] Altintasi C., Aydin O., Taplamacioglu M.C. et al., Power system harmonic and interharmonic estima- tion using Vortex Search Algorithm, Electric Power Systems Research, vol. 182, pp. 106187 (2020), DOI: 10.1016/j.epsr.2019.106187.

[4] Sun Y., Lin Y., Wang Y. et al., Theory of symmetric winding distributions and a general method for winding MMF harmonic analysis, IET Electric Power Applications, vol. 14, no. 13 (2021), DOI: 10.1049/iet-epa.2020.0553.

[5] Cao Q., Shen Q.T., An improved �� �� ����harmonic current detecting method and digital LPF filter’s study, Techniques of Automation and Applications, vol. 29, no. 3, pp. 74–76 (2010), http://en.cnki.com.cn/Article_en/CJFDTotal-ZDHJ201003022.htm.

[6] Paplinski J.P., Cariow A., Fast 10-Point DFT Algorithm for Power System Harmonic Analysis, Applied Sciences, vol. 11, no. 15, p. 7007 (2021), DOI: 10.3390/app11157007.

[7] Wu J.Z., Mei F., Chen C., Power system harmonic detection method based on empirical wavelet transform, Power System Protection and Control, vol. 48, no. 6, pp. 136–143 (2020), DOI: 10.19783/j.cnki.pspc.190470.

[8] Li J., Lin H., Teng Z. et al., Digital prolate spheroidal window-based S-transform for time-varying harmonic analysis, Electric Power Systems Research, vol. 187 (2020), DOI: 10.1016/j.epsr.2020.106512.

[9] Zhang Y.L., Chen H.W., Parameter identification of harmonics and inter-harmonics based on ceemd- wpt and Prony algorithm, Power System Protection and Control, vol. 46, no. 12, pp. 115–121 (2018), DOI: 10.7667/PSPC170866.

[10] Yang Y.K., Yang M.Y., Application of prony algorithm in parameter identification of harmon- ics and inter-harmonics, Proceedings of the CSU-EPSA, vol. 24, no. 3, pp. 121–126 (2012), http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLZD201203024.htm.

[11] Zhang Y., Fan W., Zhang Q., Li X., Harmonic separation from grid voltage with EEMD-ICA and SVD, Computer Measurement and Control, vol. 27, no. 3, pp. 39–43 (2019), http://www.jsjclykz.com/ ch/reader/view_abstract.aspx?file_no=201809061095.

[12] Chen Q., Cai W., Sun L. et al., Harmonic detection method based on VMD, Electrical Measurement and Instrumentation, vol. 55, no. 2, pp. 59–65 (2018), https://doi.org/10.1088/1742-6596/2095/1/012057.

[13] Thirumala K., Umarikar A.C., Jian T., Estimation of single-phase and three -phase power -quality indices using empirical wavelet transform, IEEE Transactions on Power Delivery, vol. 30, no. 1, pp.445–454 (2015), DOI: 10.1109/TPWRD.2014.2355296.

[14] Desai V.A., Rathore S., Harmonic detection using Kalman filter, In Proceedings of the 2016 Interna- tional Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, pp. 858–863 (2016), DOI: 10.1109/ICEEOT.2016.7754808.

[15] Tiyarachakun S., Areerak K.L., Areerak K.N., Instantaneous Power Theory with Fourier and Optimal Predictive Controller Design for Shunt Active Power Filter, Model. Simul. Eng., pp. 1–20 (2014), DOI: 10.1155/2014/381760.

[16] Habrouk M., Darwish M.K., Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using DSPs, IEEE Proc. Electr. Power Appl., vol. 148, pp. 21–28 (2001), DOI: 10.1049/ip-epa:20010014.

[17] Karimi H., Karimi G.M., Reza I.M., Bakhshai A.R., An adaptive filter for synchronous extraction of har- monics and distortions, IEEE Trans. Power Deliv., vol. 18, pp. 1350–1356 (2003), DOI: 10.1515/ijeeps- 2013-0145.

[18] Musa S., Mohd M.A., Hoon Y., Modified Synchronous Reference Frame Based Shunt Active Power Filter with Fuzzy Logic Control Pulse Width Modulation Inverter, Energies, vol. 10, no. 758 (2017), DOI: 10.3390/en10060758.

[19] Narongrit T., Areerak K.L., Areerak K.N., A New Design Approach of Fuzzy Controller for Shunt Active Power Filter, Electr. Power Compon. Syst., vol. 43, pp. 685–694 (2015), DOI: 10.1080/ 15325008.2014.996680.

[20] Sujitjorn S., Areerak K.L., Kulworawanichpong T., The DQ Axis with Fourier (DQF) Method for Harmonic Identification, IEEE Trans. Power Deliv., vol. 22, pp. 737–739 (2007), DOI: 10.1109/TP- WRD.2006.882465.

[21] Daubechies I., Jianfeng L., Synchrosqueezed wavelet transforms: An empirical mode decomposition- like tool, Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 243–261 (2011), DOI: 10.1016/j.acha.2010.08.002.

[22] Li L., Cai H.Y., Jiang Q.T., Ji H.B., Adaptive synchrosqueezing transformwith a time-varying parameter for non-stationary signal separation, Applied and Computational Harmonic Analysis, vol. 49, no. 3, pp. 1884–2020 (2019), DOI: 10.1016/j.acha.2019.06.002.


[23] Gang Y., Zhonghu W., Ping Z., Zhen L., Local maximum synchrosqueezing transform: An energy- concentrated time-frequency analysis tool, Mechanical Systems and Signal Processing, vol. 117, pp. 537–552 (2019), DOI: 10.1016/j.ymssp.2018.08.006.

[24] Lin L., Haiyan C., Qiangtang J., Hongbing J., An empirical signal separation algorithm for multicom- ponent signals based on linear time-frequency analysis, Mechanical Systems and Signal Processing. vol. 121, pp. 791–809 (2019), DOI: 10.1016/j.ymssp.2018.11.037.

[25] Rasoul M.M., Alan F.L., Yunwei L., Adaptive control of an active power filter for harmonic suppres- sion and power factor correction, International Journal of Dynamics and Control, pp. 1–10 (2021), DOI: 10.1007/s40435-021-00825-0.

[26] Avalos O., Cuevas E., Becerra H.G. et al., Kernel Recursive Least Square Approach for Power System Harmonic Estimation, Electric Power Components and Systems, vol. 48, no. 16–17, pp. 1708–1721 (2021), DOI: 10.1080/15325008.2021.1908457.

[27] Mert A., Celik H.H., Emotion recognition using time-frequency ridges of EEG signals based on multivariate synchrosqueezing transform, Biomedizinische Technik. Biomedical Engineering, vol. 66, no. 4, pp. 345–352 (2021), DOI: 10.1515/bmt-2020-0295.

[28] Yang C., Ban L., Research on Harmonic Detection System Based on Wavelet Packet Transform, IOP Conf. Series: Journal of Physics: Conf. Series, vol. 1314, no. 012038 (2019), DOI: 10.1088/1742-6596/1314/1/012038.

[29] Gong M.F. et al., A New Method to Detect Harmonics and Inter-Harmonics Based on Hilbert Marginal Spectrum, Applied Mechanics and Materials, vol. 229–231, pp. 1060–1063 (2012), DOI: 10.4028/www.scientific.net/AMM.229-231.1060.

[30] Yu M., Wang B., Wang W.B. et al., An inter-harmonic detection method based on synchrosqueezing wavelet transform, Proceedings of the CSEE, vol. 36, no. 11, pp. 2944–2951 (2016), DOI: 10.13334/j.0258-8013.pcsee.2016.11.010.

[31] Chang G.W. et al., A Hybrid Approach for Time-Varying Harmonic and Interharmonic Detection Using Synchrosqueezing Wavelet Transform, Applied Sciences, vol. 11, no. 2, pp. 752 (2021), DOI: 10.3390/app11020752.

[32] Khoa N.M., Le V.D., Tung D.D., Toan N.A., An advanced IoT system for monitoring and analysing chosen power quality parameters in micro-grid solution, Archives of Electrical Engineering, vol. 70, no. 1, pp. 173–188 (2021), DOI: 10.24425/aee.2021.136060.

[33] Yudaev I.V., Rud E.V., Yundin M.A., Ponomarenko T.Z., Isupova A.M., Analysis of the harmonic composition of current in the zero-working wire at the input of the load node with the prevailing non-linear power consumers, Archives of Electrical Engineering, vol. 70, no. 2, pp. 463–473 (2021), DOI: 10.24425/aee.2021.136996.


Date

2022.03.11

Type

Article

Identifier

DOI: 10.24425/aee.2022.140205
×