Corrosion Behavior of FeAl and Fe3Al Based Fe-Al-C Alloys in Sulfuric Acid

Journal title

Archives of Foundry Engineering




vol. 22


No 2


Silva, A.P. : PUC Minas, Brazil ; Brito, P.P. : PUC Minas, Brazil ; Martins, N. : PUC Minas, Brazil



Iron Aluminides ; Microstructure ; Mechanical properties ; corrosion resistance

Divisions of PAS

Nauki Techniczne




The Katowice Branch of the Polish Academy of Sciences


[1] Zamanzade, M., Barnoush, A. & Motz, C. (2016). A review on the properties of iron aluminide intermetallics. Crystals. 6(10), 1-29. DOI: 10.3390/cryst6010010.
[2] Stoloff, N.S. (1998). Iron aluminides: present status and future prospects. Materials Science and Engineering: A. 258(1-2), 1-14. DOI: 10.1016/S0921-5093(98)00909-5.
[3] Cinca, N., Lima, C.R.C. & Guilemany, J.M. (2013). An overview of intermetallics research and application: Status of thermal spray coatings. Journal of Materials Research and Technology. 2(1), 75-86. DOI: 10.1016/j.jmrt.2013.03.013.
[4] Palm, M., Stein, F. & Dehm, G. (2019). Iron Aluminides. Annual Review of Materials Research. 49, 297-326. DOI: 10.1146/annurev-matsci-070218-125911.
[5] Deevi, S.C. & Sikka, V.K. (1996). Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics. 4(5) 357-375. DOI: 10.1016/0966-9795(95)00056-9.
[6] Shankar Rao, V., Baligidad, R. G. & Raja, V. S. (2002). Effect of carbon on corrosion behaviour of Fe3Al intermetallics in 0.5N sulphuric acid. Corrosion Science. 44, 521-533. DOI: 10.1016/S0010-938X(01)00084-1.
[7] Shankar Rao, V. (2005). Repassivation behaviour and surface analysis of Fe3Al based iron aluminide in 0.25M H2SO4. Corrosion Science. 47, 183-194. DOI: 10.1016/j.corsci.2004.05.014.
[8] Nigam, A.K., Balasubramaniam, R., Bhargava, S. & Baligidad, R.G. (2006). Electrochemical impedance spectroscopy and cyclic voltammetry study of carbon-alloyed iron aluminides in sulfuric acid. Corrosion Science. 48(7), 1666-1678. DOI: 10.1016/j.corsci.2010.05.006.
[9] Schneider, A., Falat, L., Sauthoff, G. & Frommeyer, G. (2005). Microstructures and mechanical properties of Fe3Al-based Fe-Al-C alloys. Intermetallics. 13(12), 1322-1331. DOI: 10.1016/j.intermet.2005.01.0.
[10] Brito, P., Pinto, H., Klaus, M., Genzel, C. & Kaysser-Pyzalla, A. (2010). Internal stresses and textures of nanostructured alumina scales growing on polycrystalline Fe3Al alloy. Powder Diffraction. 25(2), 114-118. DOI: 10.1154/1.3402764
[11] Brito, P., Schuller, E., Silva, J., Campos, T.R., Araújo, C.R. & Carneiro, J.R. (2017). Electrochemical corrosion behaviour of (100), (110) and (111) Fe3Al single crystals in sulphuric acid. Corrosion Science. 126, 366-373. DOI: 10.1016/j.corsci.2017.05.029.
[12] Brito, P.P., Carvalho Filho, C.T. & Oliveira, G.A. (2020). Electrochemical corrosion behavior of iron aluminides in sulfuric acid. Materials Science Forum. 1012, 395-400. DOI: 10.4028/
[13] Hernández-Hernández, M., Liu, H. B., Alvarez-Ramirez, J. & Espinosa-Medina, M. A. (2017). Corrosion behavior of Fe-40at.%Al-Based intermetallic in 0.25M H2SO4 solution. Journal of Materials Engineering and Performance. 26, 5983-5996. DOI: 10.1007/s11665-017-3036-5.






DOI: 10.24425/afe.2022.140228

Open Access Policy

Archives of Foundry Engineering is an open access journal with all content available with no charge in full text version.
The journal content is available under the Creative Commons Attribution 4.0 International License (