Details

Title

Influence of Melt Quality on the Formation of Fe Intermetallic in A360 Alloy

Journal title

Archives of Foundry Engineering

Yearbook

2022

Volume

vol. 22

Issue

No 3

Authors

Affiliation

Bas, E.N. : Istanbul University-Cerrahpasa, Turkey ; Alper, S. : Istanbul University-Cerrahpasa, Turkey ; Tuncay, T. : Karabuk University, Turkey ; Dispinar, D. : Foseco, Netherlands ; Kirtay, S. : Istanbul University-Cerrahpasa, Turkey

Keywords

A360 ; Fe intermetallic ; Melt quality ; Cooling rate

Divisions of PAS

Nauki Techniczne

Coverage

53-59

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Bjurenstedt, A., Ghassemali, E., Seifeddine, S. & Dahle, A.K. (2019). The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study. Materials Science and Engineering: A. 756, 502-507. DOI:10.1016/j.msea.2018.07.044
[2] Ferraro, S. & Timelli, G. (2015). Influence of sludge particles on the tensile properties of die-cast secondary aluminum alloys. Metallurgical and Materials Transactions B. 46(2), 1022-1034. DOI:10.1007/s11663-014-0260-3
[3] Ma, Z., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2008). A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity. Materials Science and Engineering: A. 490(1-2), 36-51. https://doi.org/10.1016/j.msea.2008.01.028
[4] Zahedi, H., Emamy, M., Razaghian, A., Mahta, M., Campbell, J. & Tiryakioğlu, M. (2007). The effect of Fe-rich intermetallics on the Weibull distribution of tensile properties in a cast Al-5 pct Si-3 pct Cu-1 pct Fe-0.3 pct Mg alloy. Metallurgical and Materials Transactions A. 38(3), 659-670. DOI: 10.1007/s11661-006-9068-3
[5] Tunçay, T., Özyürek, D., Dişpinar, D. & Tekeli, S. (2020). The effects of Cr and Zr additives on the microstructure and mechanical properties of A356 alloy. Transactions of the Indian Institute of Metals. 73(5), 1273-1285. DOI: 10.1007/s12666-020-01970-4
[6] Gao, T., Hu, K., Wang, L., Zhang, B. & Liu, X. (2017). Morphological evolution and strengthening behavior of α-Al (Fe, Mn) Si in Al–6Si–2Fe–xMn alloys. Results in physics. 7, 1051-1054. https://doi.org/10.1016/j.rinp.2017.02.040
[7] Gorny, A., Manickaraj, J., Cai, Z. & Shankar, S. (2013). Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate. Journal of Alloys and Compounds. 577, 103-124. DOI: 10.1016/j.jallcom.2013. 04.139
[8] Taylor, J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Materials Science. 1, 19-33. https://doi.org/10.1016/j.mspro.2012.06.004
[9] Khalifa, W., Samuel, F. & Gruzleski, J. (2003). Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metallurgical and Materials Transactions A. 34(13), 807-825. DOI:10.1007/s11661-003-1009-9
[10] Liu, L., Mohamed, A., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2009). Precipitation of β-Al5FeSi phase platelets in Al-Si based casting alloys. Metallurgical and Materials Transactions A. 40(10), 2457-2469. DOI:10.1007/s11661-009-9944-8
[11] Tupaj, M., Orłowicz, A., Mróz, M., Trytek, M. & Markowska, O. (2016). Usable properties of AlSi7Mg alloy after sodium or strontium modification. Archives of Foundry Engineering. 16(3), 129-132. DOI:10.1515/afe-2016-0064
[12] Dinnis, C.M., Taylor, J.A. & Dahle, A. (2006). Iron-related porosity in Al–Si–(Cu) foundry alloys. Materials Science and Engineering: A. 425(1-2), 286-296. DOI: 10.1016/j.msea.2006.03.045
[13] Mikołajczak, M. & Ratke, L. (2015). Three dimensional morphology of β-Al5FeSi intermetallics in AlSi alloys. Archives of Foundry Engineering. 15(1), 47-50. DOI:10.1515/afe-2015-0010
[14] Tunçay, T., Tekeli, S., Özyürek, D. & Dişpinar, D. (2017). Microstructure–bifilm interaction and its relation with mechanical properties in A356. International Journal of Cast Metals Research. 30(1), 20-29. https://doi.org/10.1080/13640461.2016.1192826
[15] Cao, X. & Campbell, J. (2000). Precipitation of primary intermetallic compounds in liquid Al 11.5 Si 0.4 Mg alloy. International Journal of Cast Metals Research. 13(3), 175-184. https://doi.org/10.1080/13640461.2000.11819400
[16] Cao, X. & Campbell, J. (2003). The nucleation of Fe-rich phases on oxide films in Al-11.5 Si-0.4 Mg cast alloys. Metallurgical and Materials Transactions A. 34(7), 409-1420.
[17] Cao, X. & Campbell, J. (2004). Effect of precipitation and sedimentation of primary α-Fe phase on liquid metal quality of cast Al–11.1 Si–0.4 Mg alloy. International Journal of Cast Metals Research. 17(1), 1-11. https://doi.org/10.1179/136404604225014792
[18] Cao, X. & Campbell, J. (2004). The solidification characteristics of Fe-rich intermetallics in Al-11.5 Si-0.4 Mg cast alloys. Metallurgical and Materials Transactions A. 35(5), 1425-1435. DOI:10.1007/s11661-004-0251-0
[19] Bjurenstedt, A., Casari, D., Seifeddine, S., Mathiesen, R.H. & Dahle, A.K. (2017). In-situ study of morphology and growth of primary α-Al (FeMnCr) Si intermetallics in an Al-Si alloy. Acta Materialia. 130, 1-9.
[20] Shabestari, S. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Materials Science and Engineering: A. 383(2), 289-298. https://doi.org/10.1016/j.msea.2004.06.022
[21] Ferraro, S., Fabrizi, A. & Timelli, G. (2015). Evolution of sludge particles in secondary die-cast aluminum alloys as function of Fe, Mn and Cr contents. Materials Chemistry and Physics. 153, 168-179. DOI:10.1016/j.matchemphys. 2014.12.050
[22] Dispinar D. & Campbell, J. (2014). Reduced pressure test (RPT) for bifilm assessment. In: Tiryakioğlu, M., Campbell, J., Byczynski, G. (eds) Shape Casting: 5th International Symposium 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48130-2_30.
[23] Gyarmati G. et al., (2021). Controlled precipitation of intermetallic (Al, Si) 3Ti compound particles on double oxide films in liquid aluminum alloys. Materials Characterization. 181, 111467. https://doi.org/10.1016/j.matchar.2021.111467
[24] Podprocká, R., Malik, J. & Bolibruchová, D. (2015). Defects in high pressure die casting process. Manufacturing technology. 15(4), 674-678. DOI: 10.21062/ujep/x.2015/a/ 1213-2489/MT/15/4/674
[25] Samuel, A. Samuel, F. & Doty, H. (1996). Observations on the formation of β-Al5FeSi phase in 319 type Al-Si alloys. Journal of Materials Science. 31(20), 5529-5539. DOI:10.1080/13640461.2001.11819429
[26] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. DOI:10.1016/j.matchar. 2019.109925
[27] Liu, K., Cao, X. & Chen, X.-G. (2011). Solidification of iron-rich intermetallic phases in Al-4.5 Cu-0.3 Fe cast alloy. Metallurgical and Materials Transactions A. 42(7), 2004-2016. DOI: 10.1007/s11661-010-0578-7

Date

2022.09.07

Type

Article

Identifier

DOI: 10.24425/afe.2022.140236
×