Szczegóły

Tytuł artykułu

Cooling water flow influence on power plant unit performance for various condenser configurations setup

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2022

Wolumin

vol. 43

Numer

No 1

Autorzy

Afiliacje

Dobkiewicz-Wieczorek, Ewa : Silesian University of Technology Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100, Gliwice, Poland

Słowa kluczowe

Cooling water ; Power plant efficiency ; Cooling water flow control ; CHP plant efficiency

Wydział PAN

Nauki Techniczne

Zakres

141-167

Wydawca

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliografia

[1] Chmielniak T., Łukowicz H.: Modeling and optimization of coal power units with CO2 capture. WPS, Gliwice 2015 (in Polish).
[2] Chmielniak T., Łukowicz H.: Condensing power plant cycle assessing possibilities of improving its e?ciency. Arch. Thermodyn. 31(2010), 3, 105–113.
[3] Grzesiczek E., Mendecki J., Komarnicki Z.: Optimization of cooling water flow in 225 MW turbine condenser. Energetyka (2007), 8, 574–575.
[4] Rusak J.: Reduction of auxiliary energy consumption in TAURON Wytwarzanie S.A. on the example of cooling water systems modernization. Energetyka (2013), 1, 43–47.
[5] Laskowski R.: Wybrane zagadnienia modelowania i optymalizacji skraplaczy energetycznych i wymienników regeneracyjnych. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2018.
[6] Laskowski R., Smyk A., Rusowicz A., Grzebielec A.: Optimization of the cooling water mass flow rate under variable load of a power unit. Appl. Therm. Eng. 191(2021), 116874.
[7] Gardzilewicz A., Błaszczyk A., Głuch J.: Operating and economic conditions of cooling water control for marine steam turbine condensers. Pol. Marit. Res. 18(2011), 3(70), 48–54.
[8] Harish R., Subhramanyan E.E., Madhavan R., Vidyanand S.: Theoretical model for evaluation of variable frequency drive for cooling water pumps in sea water based once through condenser cooling water systems. Appl. Therm. Eng. 30(2010), 2051–2057.
[9] Xia L., Liu D., Zhou L., Wang P., Chen Y.: Optimization of a seawater oncethrough cooling system with variable speed pumps in fossil fuel power plants. Int. J. Therm. Sci., 91(2015), 105–112.
[10] Dobkiewicz-Wieczorek E.: Cooling water mass flow optimization for low load of condensing turbine including CHP turbine. Rynek Energii (2020), 6, 15–20.
[11] Dobkiewicz-Wieczorek E.: Influence of surface condensers connection configuration on power plant unit performance. Arch. Thermodyn. 41(2020), 4, 115–145.
[12] Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, The International Association for the Properties of Water and Steam. Lucerne 1997.
[13] Dobkiewicz-Wieczorek E.: Method for calculating the exhaust steam pressure of a condensing turbine. Energetyka (2019), 11, 725–730.
[14] KSB, Tips for the correct design of pumping stations equipped with submersible pumps. https://www.ksb.com/blob/173022/c7fe2d9f8e342c707efa5e0966136752/pumpenstation-download-data.pdf (accessed 6 Oct. 2021). [15] PN-76/M-34034 Pipelines – Principles of pressure loss calculations.
[16] EMBER, Average monthly wholesale electricity prices. https://ember-climate.org/european-electricity-transition/ (accessed 6 Oct. 2021).
[17] Market electrical energy price. https://wysokienapiecie.pl/40547-o-ile-wzrosna-cenypradu-w-2022-policzylismy/ (accessed 6 Oct. 2021).
[18] PSE, Daily market electrical energy price. https://www.pse.pl/dane-systemowe/funkcjonowanie-rb/raporty-dobowe-z-funkcjonowania-rb/podstawowe-wskazniki -cenowe-i-kosztowe/rynkowa-cena-energii-elektrycznej-rce (accessed 6 Oct. 2021).

Data

2022.04.13

Typ

Article

Identyfikator

DOI: 10.24425/ather.2022.140929 ; ISSN 1231-0956 ; eISSN 2083-6023

Rada naukowa

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×