Details
Title
Design and performance analysis of a mechanically coupled spring compliant to out-of-plane oscillationJournal title
Archive of Mechanical EngineeringYearbook
2022Volume
vol. 69Issue
No 4Authors
Affiliation
Nguyen, Duong Van : International Training Institute for Materials Science, Hanoi University of Science and Technology, Vietnam ; Nguyen, Duong Van : FPT University, Hanoi, Vietnam ; Nguyen, Chien Quoc : International Training Institute for Materials Science, Hanoi University of Science and Technology, Vietnam ; Dang, Hieu Van : FPT University, Hanoi, Vietnam ; Chu, Hoang Manh : International Training Institute for Materials Science, Hanoi University of Science and Technology, VietnamKeywords
coupled spring ; mode coupling ; serpentine spring ; Sigitta spring theory ; finite element methodDivisions of PAS
Nauki TechniczneCoverage
629-643Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] X. Liu, K. Kim, and Y. Sun. A MEMS stage for 3-axis nanopositioning. Journal of Micromechanics and Microengineering, 17(9):1796–1802, 2007. doi: 10.1088/0960-1317/17/9/007.[2] R. Legtenberg, A.W. Groeneveld, and M. Elwenspoek. Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering, 6(3):320–329, 1996. doi: 10.1088/0960-1317/6/3/004.
[3] S. Abe, M.H. Chu, T. Sasaki, and K. Hane. Time response of a microelectromechanical silicon photonic waveguide coupler switch. IEEE Photonics Technology Letters, 26(15):1553–1556, 2014. doi: 10.1109/lpt.2014.2329033.
[4] T.Q. Trinh, L.Q. Nguyen, D.V. Dao, H.M. Chu, and H.N. Vu, Design and analysis of a z-axis tuning fork gyroscope with guided-mechanical coupling. Microsystem Technologies, 20(2):281–289, 2014. doi: 10.1007/s00542-013-1947-0.
[5] Y.J. Huang, T.L. Chang, and H.P. Chou. Novel concept design for complementary metal oxide semiconductor capacitive z-direction accelerometer. Japanese Journal of Applied Physics, 48(7):076508, 2009. doi: 10.1143/jjap.48.076508.
[6] A. Sharaf and S. Sedky. Design and simulation of a high-performance Z-axis SOI-MEMS accelerometer. Microsystem Technologies, 19(8):1153–1163, 2013. doi: 10.1007/s00542-012-1714-7.
[7] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida. Three-axis SOI capacitive accelerometer with PLL C–V converter. Sensors and Actuators A: Physical, 75(1):77–85, 1999. doi: 10.1016/s0924-4247(98)00295-7.
[8] D. Peroulis, S.P. Pacheco, K. Sarabandi, and L.P.B. Katehi. Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Transactions on Microwave Theory and Techniques, 51:259–270, 2003. doi: 10.1109/TMTT.2002.806514.
[9] Y. Liu. Stiffness Calculation of the microstructure with crab-leg flexural suspension. Advanced Materials Research, 317-319:1123–1126, 2011. doi: 10.4028/www.scientific.net/AMR.317-319.1123.
[10] H.M. Chou, M.J. Lin, and R. Chen. Investigation of mechanics properties of an awl-shaped serpentine microspring for in-plane displacement with low spring constant-to-layout area. Journal of Micro/Nanolithography MEMS and MOEMS, 15(3):035003, 2016. doi: 10.1117/1.JMM.15.3.035003.
[11] D.V. Hieu, L.V. Tam, N.V. Duong, N.D. Vy, and C.M. Hoang. Design and simulation analysis of a z axis microactuator with low mode cross-talk. Journal of Mechanics, 36(6):881–888, 2020. doi: 10.1017/jmech.2020.48.
[12] D.V. Hieu, L.V. Tam, K. Hane, and M.H. Chu. Design and simulation analysis of an integrated XYZ micro-stage for controlling displacement of scanning probe. Journal of Theoretical and Applied Mechanics, 59(1):143–156, 2021. doi: 10.15632/jtam-pl/130549.
[13] F. Hu, W. Wang, and J. Yao. An electrostatic MEMS spring actuator with large stroke and out-of-plane actuation. Micromechanics and Microengineering, 21(11):115029, 2011. doi: 10.1088/0960-1317/21/11/115029.
[14] W. Wai-Chi, A.A. Azid, and B.Y. Majlis. Formulation of stiffness constant and effective mass for a folded beam. Archives of Mechanics, 62(5):405–418, 2010.
[15] Y. Cao and Z. Xi. A review of MEMS inertial switches. Microsystem Technologies, 25(12):4405–4425, 2019. doi: 10.1007/s00542-019-04393-4.
[16] K.R. Sudha, K. Uttara, P.C. Roshan, and G.K. Vikas. Design and analysis of serpentine based MEMS accelerometer. AIP Conference Proceedings, 1966:020026, 2018. doi: 10.1063/1.5038705.
[17] H.M. Chou, M.J. Lin, and R. Chen. Fabrication and analysis of awlshaped serpentine microsprings for large out-of-plane displacement. Journal of Micromechanics and Microengineering, 25:095018, 2015. doi: 10.1088/0960-1317/25/9/095018.
[18] C.M. Hoang, and K. Hane. Design fabrication and vacuum operation characteristics of two-dimensional comb-drive micro-scanner. Sensors and Actuators A: Physical, 165(2): 422–430, 2011. doi: 10.1016/j.sna.2010.11.004.
[19] G. Barillaro, A. Molfese, A. Nannini, and F. Pieri. Analysis simulation and relative performances of two kinds of serpentine springs. Journal of Micromechanics and Microengineering, 15(4):736–746, 2005. doi: 10.1088/0960-1317/15/4/010.
[20] P.B. Chu, I. Brener, C. Pu, S.S. Lee, J.I. Dadap, S. Park, K.Bergman et al. Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch. Journal of Microelectromechanical Systems, 14(2):261–273, 2005. doi: 10.1109/JMEMS.2004.839827.
[21] G.D.J. Su, S.H. Hung, D. Jia, and F. Jiang. Serpentine Spring corner designs for micro-electro-mechanical systems optical switches with large mirror mass. Optical Review, 12(4):339–344, 2005. doi: 10.1007/s10043-005-0339-9.
[22] A. Khlifi, A. Ahmed, S. Pandit, B. Mezghani, R. Patkar, P. Dixit, and M.S. Baghini. Experimental and theoretical dynamic investigation of MEMS Polymer mass-spring systems. IEEE Sensors Journal, 20(19):11191–11203, 2020. doi: 10.1109/JSEN.2020.2996802.
[23] J. Wu, T. Liu, K. Wang, and K. Sørby. A measuring method for micro force based on MEMS planar torsional spring. Measurement Science and Technology, 32(3):035002, 2020. doi: 10.1088/1361-6501/ab9acd.
[24] Z. Rahimi, J. Yazdani, H. Hatami, W. Sumelka, D. Baleanu, and S. Najafi. Determination of hazardous metal ions in the water with resonant MEMS biosensor frequency shift – concept and preliminary theoretical analysis. Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(3): 529–537, 2020. doi: 10.24425/bpasts.2020.133381.
[25] K.G. Sravani, D. Prathyusha, C. Gopichand, S.M. Maturi, A. Elsinawi, K. Guha, and K. S. Rao. Design, simulation and analysis of RF MEMS capacitive shunt switches with high isolation and low pull-in-voltage. Microsystem Technologies, 28:913–928, 2022. doi: 10.1007/s00542-020-05021-2.
[26] N. Lobontiu and E. Garcia. Mechanics of Microelectromechanical Systems. Kluwer Academic Publishers, 2005. doi: 10.1007/b100026.
[27] H.A. Rouabah, C.O. Gollasch, and M. Kraft. Design optimisation of an electrostatic MEMS actuator with low spring constant for an “Atom Chip”. In Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, volume 3, pages 489–492, 2002.
[28] R. Raymond and J. Raymond. Roark's Formulas for Stress and Strain. McGraw-Hill, 1989.
[29] M.S. Weinberg and A. Kourepenis. Error sources in in-plane silicon tuning-fork MEMS gyroscopes. Journal of Microelectromechanical Systems, 15(3):479–491, 2006. doi: 10.1109/jmems.2006.876779.