Szczegóły

Tytuł artykułu

Analysis of the backlash in the single stage cycloidal gearbox

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2022

Wolumin

vol. 69

Numer

No 4

Afiliacje

Król, Roman : Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland

Autorzy

Słowa kluczowe

cycloidal gearbox ; backlash ; dynamics ; multibody dynamics ; multibody simulation ; discrete Fourier transform ; spectral analysis ; FFT

Wydział PAN

Nauki Techniczne

Zakres

693-711

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Bibliografia

[1] M. Blagojević, M. Matejić, and N. Kostić. Dynamic behaviour of a two-stage cycloidal speed reducer of a new design concept. Tehnički Vjesnik, 25(2):291–298, 2018, doi: 10.17559/TV- 20160530144431.
[2] M. Wikło, R. Król, K. Olejarczyk, and K. Kołodziejczyk. Output torque ripple for a cycloidal gear train. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(21–22):7270–7281, 2019, doi: 10.1177/0954406219841656.
[3] N. Kumar, V. Kosse, and A. Oloyede. A new method to estimate effective elastic torsional compliance of single-stage Cycloidal drives. Mechanism and Machine Theory, 105:185–198, 2016, doi: 10.1016/j.mechmachtheory.2016.06.023.
[4] C.F. Hsieh. The effect on dynamics of using a new transmission design for eccentric speed reducers. Mechanism and Machine Theory, 80:1–16, 2014, doi: 10.1016/j.mechmachtheory.2014.04.020.
[5] R. Król. Kinematics and dynamics of the two stage cycloidal gearbox. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, 19(6):523–527, 2018, doi: 10.24136/atest.2018.125.
[6] K.S. Lin, K.Y. Chan, and J.J. Lee. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory, 124:73–91, 2018, doi: 10.1016/j.mechmachtheory.2017.12.028.
[7] L.X. Xu, B.K. Chen, and C.Y. Li. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 137:432–458, 2019, doi: 10.1016/j.mechmachtheory.2019.03.035.
[8] D.C.H. Yang and J.G. Blanche. Design and application guidelines for cycloid drives with machining tolerances. Mechanism and Machine Theory, 25(5):487–501, 1990, doi: 10.1016/0094-114X(90) 90064-Q.
[9] J.W. Sensinger. Unified approach to cycloid drive profile, stress, and efficiency optimization. Journal of Mechanical Design, 132(2):024503, 2010, doi: 10.1115/1.4000832.
[10] Y. Li, K. Feng, X. Liang, and M.J. Zuo. A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy. Journal of Sound and Vibration, 439:271–286, 2019, doi: 10.1016/j.jsv.2018.09.054.
[11] Z.Y. Ren, S.M. Mao, W.C. Guo, and Z. Guo. Tooth modification and dynamic performance of the cycloidal drive. Mechanical Systems and Signal Processing, 85:857–866, 2017, doi: 10.1016/j.ymssp.2016.09.029.
[12] L.X. Xu and Y.H. Yang. Dynamic modeling and contact analysis of a cycloid-pin gear mechanism with a turning arm cylindrical roller bearing. Mechanism and Machine Theory, 104:327–349, 2016, doi: 10.1016/j.mechmachtheory.2016.06.018.
[13] S. Schmidt, P.S. Heyns, and J.P. de Villiers. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques, Mechanical Systems and Signal Processing, vol. 100, pp. 152–166, 2018, doi: 10.1016/j.ymssp.2017.07.032.
[14] Y. Lei, D. Han, J. Lin, and Z. He. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mechanical Systems and Signal Processing, 38(1):113–124, 2013, doi: 10.1016/j.ymssp.2012.06.021.
[15] Y. Chen, X. Liang, and M.J. Zuo. Sparse time series modeling of the baseline vibration from a gearbox under time-varying speed condition. Mechanical Systems and Signal Processing, 134:106342, 2019, doi: 10.1016/j.ymssp.2019.106342.
[16] G. D’Elia, E. Mucchi, and M. Cocconcelli. On the identification of the angular position of gears for the diagnostics of planetary gearboxes. Mechanical Systems and Signal Processing, 83:305–320, 2017, doi: 10.1016/j.ymssp.2016.06.016.
[17] X. Chen and Z. Feng. Time-frequency space vector modulus analysis of motor current for planetary gearbox fault diagnosis under variable speed conditions. Mechanical Systems and Signal Processing, 121:636–654, 2019, doi: 10.1016/j.ymssp.2018.11.049.
[18] S. Schmidt, P.S. Heyns, and K.C. Gryllias. A methodology using the spectral coherence and healthy historical data to perform gearbox fault diagnosis under varying operating conditions. Applied Acoustics, 158:107038, 2020, doi: 10.1016/j.apacoust.2019.107038.
[19] D. Zhang and D. Yu. Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter. Measurement, 103:361–369, 2017, doi: 10.1016/j.measurement.2017.03.006.
[20] C. Wang, H. Li, J. Ou, R. Hu, S. Hu, and A. Liu. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA. Measurement, 165:108079, 2020, doi: 10.1016/j.measurement.2020.108079.
[21] W. Teng, X. Ding, H. Cheng, C. Han, Y. Liu, and H. Mu. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renewable Energy, 136:393–402, 2019, doi: 10.1016/j.renene.2018.12.094.
[22] R. Król. Resonance phenomenon in the single stage cycloidal gearbox. Analysis of vibrations at the output shaft as a function of the external sleeves stiffness. Archive of Mechanical Engineering, 68(3):303–320, 2021, doi: 10.24425/ame.2021.137050.
[23] MSC Software. MSC Adams Solver Documentation.
[24] MSC Software. MSC Adams View Documentation.

Data

4.11.2022

Typ

Article

Identyfikator

DOI: 10.24425/ame.2022.141521 ; e-ISSN 2300-1895
×