Details

Title

Novel optimization method for mobile magnetostatic shield and test applications

Journal title

Archives of Electrical Engineering

Yearbook

2022

Volume

vol. 71

Issue

No 3

Affiliation

Ralf, Patrick Alexander : Helmut Schmidt University, University of the Federal Armed Forced Hamburg, Germany ; Kreischer, Christian : Helmut Schmidt University, University of the Federal Armed Forced Hamburg, Germany

Authors

Keywords

differential evolution ; evolutionary algorithm ; magnetostatic passive shielding ; mobile application ; optimization ; spherical shells

Divisions of PAS

Nauki Techniczne

Coverage

627-639

Publisher

Polish Academy of Sciences

Bibliography

[1] Schiebold K., Zerstörungsfreie Werkstoffprüfung – Magnetpulverprüfung, Springer-Verlag (2015).
[2] Farolfi A., Trypogeorgos D., Colzi G., Fava E., Lamporesi G., Ferrari G., Design and characterization of a compact magnetic shield for ultracold atomic gas experiments, Review of Scientific Instruments, 90.11, 115114 (2019), DOI: 10.48550/arXiv.1907.06457.
[3] Report Buyer Ltd., Degaussing System Market by Solution, End User, Vessel Type and Region – Global Forecast to 2023, June (2018).
[4] Rücker A.W., VII. On the magnetic shielding of concentric spherical shells, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 37.224, pp. 95–130 (1894).
[5] Baum E., Bork J., Systematic design of magnetic shields, Journal of Magnetism and Magnetic materials, 101.1-3, pp. 69–74 (1991).
[6] Clerk Maxwell J., Electricity and magnetism, vol. 2, New York: Dover (1954).
[7] David Jackson J., Classical Electrodynamics, American Association of Physics Teachers (1999).
[8] Karaboga D., Ökdem S., A simple and global optimization algorithm for engineering problems: differential evolution algorithm, Turkish Journal of Electrical Engineering and Computer Sciences, 12.1, pp. 53–60 (2004).
[9] Bronstein I.N., Hromkovic J., Luderer B., Schwarz H.R., Blath J., Schied A., Gottwald S., Taschenbuch der Mathematik, compact disc, Springer-Verlag (2008).
[10] Bartelmann M., Feuerbacher B., Krüger T., Lüst D., Rebhan A., Wipf A., Theoretische Physik 2 |Elektrodynamik, Springer-Verlag (2018).
[11] Rohner M., Magnetisch anhaftende Partikel zuverlässig entfernen, JOT Journal für Oberflächentechnik, 53, pp. 51–53 (2013).
[12] Maurer MagneticAG, Restmagnetismus – das verkannte Problem, JOT Journal für Oberflächentechnik, 57, pp. 104–105 (2017).
[13] Wilson E., Nicholson J.W., On the magnetic shielding of large spaces and its experimental measurement, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, pp. 529–549 (1916).
[14] King L.V., XXI. Electromagnetic shielding at radio frequencies, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 15.97, pp. 201–223 (1933).
[15] Reutov Y.Y., Choice of the number of shells for a spherical magnetostatic shield, Russian Journal of Non-destructive Testing, 37.12, pp. 872–878 (2001).

Date

2022.08.29

Type

Article

Identifier

DOI: 10.24425/aee.2022.141675
×