Details

Title

An innovative method for waste heat recovery from flue gas treatment system through an additional economizer

Journal title

Archives of Thermodynamics

Yearbook

2022

Volume

vol. 43

Issue

No 2

Affiliation

Iliev, Iliya Krastev : University of Ruse, Department of Thermotechnics, Hydraulics and Environmental Engineering, Studentska 8, 7017 Ruse, Bulgaria ; Kowalczyk, Tomasz : Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-251 Gdansk, Poland ; Beloev, Hristo Kvanov : University of Ruse, Department of Thermotechnics, Hydraulics and Environmental Engineering, Studentska 8, 7017 Ruse, Bulgaria ; Terziev, Angel Kostadinov : Technical University of Sofia, Department of Power Engineering and Power Machines, Kliment Ohridski 8, 1000 Sofia, Bulgaria ; Jesionek, Krzysztof Jan : Witelon Collegium State University, Faculty of Technical and Economic Science, Sejmowa 5C, 59-220 Legnica, Poland ; Badur, Janusz : Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-251 Gdansk, Poland

Authors

Keywords

Waste heat recovery ; Flue gases ; Feasibility study ; Battery emulsifier second generation ; Bag filters

Divisions of PAS

Nauki Techniczne

Coverage

37-59

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Iliev I.: Means and methods for waste heat recovery from low-grade gas-steam flows. Monograph, University Publishing Center at the University of Ruse, Ruse 2013 (in Bulgarian).
[2] Kowalczyk T., Ziółkowski P., Badur J.: Exergy analysis of the Szewalski cycle with a waste heat recovery system. Arch. Thermodyn. 36(2015), 3, 25–48.
[3] Rutkowski Ł., Szczygieł I.: Calculation Of the furnace exit gas temperature of Stoker fired boilers. Arch. Thermodyn. 42(2021), 3, 3–24.
[4] Mikielewicz J., Mikielewicz D.: Optimal boiling temperature for orc installation. Arch. Thermodyn. 33(2012), 3, 27–37.
[5] Askarova A.S., Bolegenova S.A., Georgiev A., Bolegenova S.A., Maximov V.Yu., Manatbayev R.K., Yergaliyeva A.B., Nugymanova A.O., Baizhuma Zh.T.: The use of a new “clean” technology for burning low-grade coal in boilers of Kazakhstan TPPs. Bulg. Chem. Commun. 50(2018), Spec. Iss. G, 53–60.
[6] Nunes L.J.R., Godina R., Matias J.C.O.: Characterization and possible use to fly ashes from anthracite combustion in a thermal power plant. In: Proc. 2018 IEEE Int. Conf. on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo, June 12–15, 2018, 1–4.
[7] Zlatov N., Glazyrin S., Zhumagulov M., Aidymbayeva Z.: Wastewater treatment of the thermal power plants for desulfurization of flue gas. J. Eng. Sci. Technol. Rev., Spec. Iss. (2020), 154–157.
[8] Dzhaksybaev S.I., Muravyev I.Ya.: Big coal of Ekibastuz. Nedra, Moscow 1990, ISBN 5-247-00833-2.
[9] Shtyogolev V.A.: Battery Emulsifier Swirler Unit with Replaceable Blade Machines. Patent # RU129017U1, 2013-06-20, (2013).
[10] Bricl M.: Cleaning of flue gases in thermal power plants. J. Energy Technol. 4(2016), 45–56.
[11] https://www.mikropul.com/uploads/pdf/wet_scrubbers.pdf (accessed 20 May 2022).
[12] Lee B.K, Mohan B.R., Byeon S.H, Lim K.S., Hong E.P.: Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter. J. Air Waste Manage. Assoc. 63(2013), 499–506.
[13] Buchta J., Oziemski A.: Flue gas heat recovery in high efficient coal-fired power plant. In: Proc. 20th Int. Sci. Conf. on Electric Power Engineering (EPE), May 15-17, 2019, Kouty nad Desnou, 1–6.
[14] Szulc P., Tietze T.: Recovery and energy use of flue gas from a coal power plant. J. Power Technol. 97(2017), 135–141.
[15] Stevanovic V.D., Petrovic M.M.,Wala T., Milivojevic S., Ilic M., Muszynski S.: Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: High pressure versus low pressure economizer installation. Energy 187(2019), 115980.
[16] Wang C., He B., Sun S., Wu Y., Yan N., Yan L., Pei X.: Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant. Energy 48(2012), 196–202.
[17] Xu C., Xu G., Zhou L., Yang Y., Li Y., Deng J.: A novel flue gas heat recovery system integrated with air preheating in a utility boiler. In: Proc. ASME Turbo Expo 2013, Power for Land, Sea, and Air, Vol. 2, Turbo Expo 2013, San Antonio, June 3–7, 2013. ASME Pap. GT2013–95185.
[18] Xu G., Xu C., Yang Y., Fang Y., Li Y., Song X.: A novel flue gas waste heat recovery system for coal-fired ultra-supercritical power plants. Appl. Therm. Eng. 67(2014), 240–249.
[19] Han Y., Xu G., Zheng Q., Xu C., Hu Y., Yang Y., Lei J.: New heat integration system with bypass flue based on the rational utilization of low-grade extraction steam in a coal–fired power plant. Appl. Therm. Eng. 113(2017), 460–471.
[20] Yan M., Zhang L., Shi Y., Zhang L., Li Y., Ma C.: A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants, Heat recovery from wet flue gas. Energy 152 (2018), 84–94.
[21] Fan C., Pei D., Wei H.: A novel cascade energy utilization to improve efficiency of double reheat cycle. Energy Convers. Manage. 171(2018), 1388–1396.
[22] Yang Y., Xu C., Xu G., Han Y., Fang Y., Zhang D.: A new conceptual cold-end design of boilers for coal fired power plants with waste heat recovery. Energy Convers. Manage. 89(2015), 137–146.
[23] Ziółkowski P., Hyrzynski R., Lemanski M., Kraszewski B., Bykuc S., Głuch S., Sowizdzał A., Pajak L., Wachowicz-Pyzik A., Badur J.: Different design aspects of an organic Rankine cycle turbine for electricity production using a geothermal binary power plant. Energy Convers. Manage. 246(2021), 114672. [24] Mikielewicz D., Wajs J, Ziółkowski P., Mikielewicz J.: Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat. Energy 97(2016), 11–19.
[25] Huang S., Li Ch., Tan T., Fu P., Wang L., Yang Y.: Comparative evaluation of integrated waste heat utilization systems for coal-fired power plants based on in-depth boiler-turbine integration and organic rankine cycle. Entropy 20(2018), 2, 89.
[26] Alekhnovich A.N.: Ash collection at homeland thermal power plants. Private communication, (2020).
[27] Leister N., Karbstein H.P.: Evaluating the stability of double emulsions. A review of the measurement techniques for the systematic investigation of instability mechanisms. Colloids Interfaces 4(2020), 1, 8.
[28] Shamsi S.S.M., Negash A.A., Cho G.B., Kim Y.M.: Waste heat and water recovery system optimization for flue gas in thermal power plants. Sustainability 11(2019), 1881.
[29] http://www.coolprop.org (accessed 20 May 2022).
[30] Nemade A.C., Ponsankar S.: Efficiency improvement in thermal power plants using waste heat recovery of flue gas-simulation study. IOP Conf. Ser.: Mater. Sci. Eng. 912(2020), 042015.
[31] Kostov K., Ivanov I., Atanasov K.: Development and analysis of a new approach for simplified determination of the heating and the cooling loads of livestock buildings. EUREKA: Phys. Eng. 2(2021), 87–98.
[32] https://www.publenef-toolbox.eu/tools/ensi-eab-energy-auditing-buildings-bulgaria (accessed 20 May 2022).

Date

2022.08.02

Type

Article

Identifier

DOI: 10.24425/ather.2022.141977

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×