Details

Title

Application of response surface methodology to improve methane production from jerusalem artichoke straw

Journal title

Archives of Environmental Protection

Yearbook

2022

Volume

48

Issue

3

Affiliation

Meng, Yan : Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China ; Li, Yi : Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China ; Chen, Laisheng : Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China ; Han, Rui : Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China

Authors

Keywords

jerusalem artichoke straw ; anaerobic digestion ; response surface methodology ; methane production

Divisions of PAS

Nauki Techniczne

Coverage

70-79

Publisher

Polish Academy of Sciences

Bibliography

  1. Adeleke, A.O., Latiff, A.A.A., Al-Gheethi, A.A. & Daud, Z. (2017). Optimization of operating parameters of novel composite adsorbent for organic pollutants removal from POME using response surface methodology,Chemosphere, 174, pp. 232-242. DOI:10.1016/j.chemosphere.2017.01.110.
  2. APHA. (2005). Standard methods for the examination of water & wastewater, American Public Health (Association. ed.), Washington DC: American Public Health Association.
  3. Cai, Y., Zhao, X., Zhao, Y., Wang, H., Yuan, X., Zhu, W., Cui, Z. & Wang, X. (2018). Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability, Bioresource Technology, 250, pp. 163-170. DOI:10.1016/j.biortech.2017.07.151.
  4. Cai, Y., Gallegos, D., Zheng, Z., Stinner, W., Wang, X., Pröter, J. & Schäfer, F. (2021). Exploring the combined effect of total ammonia nitrogen, pH and temperature on anaerobic digestion of chicken manure using response surface methodology and two kinetic models, Bioresource Technology, 337, 125328. DOI:10.1016/j.biortech.2021.125328.
  5. Ciccoli, R., Sperandei, M., Petrazzuolo, F., Broglia, M., Chiarini, L., Correnti, A., Farneti, A., Pignatelli, V. & Tabacchioni, S. (2018). Anaerobic digestion of the above ground biomass of Jerusalem Artichoke in a pilot plant: Impact of the preservation method on the biogas yield and microbial community,Biomass and Bioenergy, 108, pp. 190-197. DOI:10.1016/j.biombioe.2017.11.003.
  6. Gabriel, S.A, Funmilayo, D.F. & Evariste, G.K. (2020). Process Optimisation of Enzymatic Saccharification of Soaking Assisted and Thermal Pretreated Cassava Peels Waste for Bioethanol Production, Waste and Biomass Valorization, 11, 4, pp. 2409-2420. DOI:10.1007/s12649-018-00562-0.
  7. Gnansounou, E. & Dauriat, A. (2010). Techno-economic analysis of lignocellulosic ethanol: A review, Bioresource Technology, 101, 13, pp. 4980-4991. DOI:10.1016/j.biortech.2010.02.009.
  8. Gunnarsson, I. B., Svensson, S. E., Johansson, E., Karakashev, D. & Angelidaki, I. (2014). Potential of Jerusalem artichoke (Helianthustuberosus L.) as a biorefinery crop, Industrial Crops & Products, 56, pp. 231-240. DOI:10.1016/j.indcrop.2014.03.010.
  9. Günerhan, Ü., Us, E., Dumlu, L., Yılmaz, V., Carrère, H. & Perendeci, A.N. (2020). Impacts of Chemical-Assisted Thermal Pretreatments on Methane Production from Fruit and Vegetable Harvesting Wastes: Process Optimization, Molecules, 23, 25, 500. DOI:10.3390/molecules25030500.
  10. Hassan, T.M., Hossain, M.S., Kassim, M.H., Ibrahim, M., Mohammad, N.F. & Hussin, M. H. (2020). Optimizing the Acid Hydrolysis Process for the Isolation of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches Using Response Surface Methods, Waste and Biomass Valorization, 11, 6, pp. 2755-2770. DOI:10.1007/s12649-019-00627-8.
  11. Hossain, M. Z., Suely, A., Yun, J., Zhang, G., Faisal, N. A., Qi, X. & J.N. S. (2019). Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production, Renewable and Sustainable Energy Reviews, 105, pp. 105-128. DOI:10.1016/j.rser.2019.01.048.
  12. Kafle, Gopi Krishna, Kim & Sang Hun. (2013). Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation, Applied Energy, 103, pp. 61-72. DOI:10.1016/j.apenergy.2012.10.018.
  13. Khalid, H., Cai, F., Zhang, J., Zhang, R., Wang, W., Liu, G. & Chen, C. (2019). Optimizing key factors for biomethane production from KOH-pretreated switchgrass by response surface methodology, Environmental science and pollution research international, 26, 24, pp. 25084-25091. DOI:10.1007/s11356-019-05615-y.
  14. Kim, M., Kim, B., Nam, K. & Choi, Y. (2018). Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw, Biochemical Engineering Journal, 140, pp. 108-114. DOI:10.1016/j.bej.2018.09.012.
  15. Kim, S., Park, J.M. & Kim, C.H. (2013). Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromycesmarxianus CBS1555, Applied biochemistry and biotechnology, 169, 5, pp. 1531-1545. DOI:10.1007/s12010-013-0094-5.
  16. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Isaias Emilio Paulino do Carmo. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland, Archives of Environmental Protection, 45, 3, pp. 98-108. DOI:10.24425/aep.2019.128646.
  17. Kreuger, E., Sipos, B., Zacchi, G., Svensson, S.E., Bjornsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production, Bioresource Technology, 102, pp. 3457-3465. DOI:10.1016/j.biortech.2010.10.126.
  18. Li, C., Liu, G., Nges, I. A. & Liu, J. (2016). Enhanced biomethane production from Miscanthuslutarioriparius using steam explosion pretreatment, Fuel, 179, pp. 267-273. DOI:10.1016/j.fuel.2016.03.087.
  19. Liu, J., Yang, M., Zhang, J., Zheng, J., Xu, H., Wang, Y. & Wei, Y. (2018). A comprehensive insight into the effects of microwave-H2O2 pretreatment on concentrated sewage sludge anaerobic digestion based on semi-continuous operation, Bioresource Technology, 256, pp. 118-127. DOI:10.1016/j.biortech.2018.01.126.
  20. Li, W., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., Gu, G. & Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke, Carbohydrate Polymers, 121, pp. 315-319. DOI:10.1016/j.carbpol.2014.12.055.
  21. Long, X., Shao, H., Liu, L., Liu, L. & Liu, Z. (2016). Jerusalem artichoke: A sustainable biomass feedstock for biorefinery, Renewable and Sustainable Energy Reviews, 54, pp. 1382-1388. DOI:10.1016/j.rser.2015.10.063.
  22. Monlau, F., Sambusiti, C., Barakat, A., Guo, X.M., Latrille, E., Trably, E., Steyer, J.P., Carrere, H. (2012). Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials, Environmental science & technology, 6, 46, pp. 12217-12225. DOI:10.1021/es303132t.
  23. Nges, A. I., Li, C., Wang, B., Xiao, L., Yi, Z., Liu, J. (2016). Physio-chemical pretreatments for improved methane potential of Miscanthuslutarioriparius, Fuel, 166, pp. 29-35. DOI:10.1016/j.fuel.2015.10.108.
  24. Nowicka, A., Zieliński, M., Dębowski, M., Dudek, M. (2021). Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment, Energies, 14, 8018. DOI:10.3390/EN14238018.
  25. Oh, S.Y., Yoo, D.I., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H. & Youk, J.H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydrate Research, 340, 15, pp. 2376-2391. DOI:10.1016/j.carres.2005.08.007.
  26. Oyekanmi, A.A., Ahmad,A., MohdSetapar, S.H., Alshammari, M.B., Jawaid, M., Hanafiah, M.M., Abdul Khalil, H.P.S. & Vaseashta, A. (2021a). Sustainable Duriozibethinus-Derived Biosorbents for Congo Red Removal from Aqueous Solution: Statistical Optimization, Isotherms and Mechanism Studies, Sustainability, 13, 13264. DOI:10.3390/SU132313264.
  27. Oyekanmi, A.A., Alshammari, M.B., Ibrahim, M.N.M., Hanafiah, M.M., Elnaggar, A.Y., Ahmad, A., Oyediran, A.T., Rosli, M.A., Mohd, Setapar, S.H., Nik, Daud, N.N. & Hussein, E.E. (2021b). Highly Effective Cow Bone Based Biocomposite for the Sequestration of Organic Pollutant Parameter from Palm Oil Mill Effluent in a Fixed Bed Column Adsorption System, Polymers (Basel), 27, 14, 86. DOI:10.3390/polym14010086.
  28. Passos, F., Felix, L., Rocha, H., Pereira, Jde, O., de, Aquino, S. (2016). Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production, Bioresource Technology, 209, pp. 305-312. DOI:10.1016/j.biortech.2016.03.006.
  29. Passos, F., Ortega, V. & Donoso-Bravo, A. (2017). Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation, Bioresource Technology, 227, pp. 239-246. DOI:10.1016/j.biortech.2016.12.034.
  30. Paudel, S.R., Banjara, S.P., Choi, O.K., Park, K.Y., Kim, Y.M. & Lee, J.W. (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges, Bioresource Technology, 245, pp. 1194-1205. DOI:10.1016/j.biortech.2017.08.182.
  31. Pfariso, M., Eugéne, R., Annie, F. A. C & Johann, F. G. (2021). Maximising the Benefits of Enzyme Synergy in the Simultaneous Saccharification and Fermentation of Jerusalem Artichoke (Helianthus tuberosus) Tuber Residues into Ethanol, Waste and Biomass Valorization.Waste Biomass Valor, 13, pp. 535–546. DOI:10.1007/S12649-021-01488-W.
  32. Pokój, T., Gusiatin, M. Z., Bułkowska, K. & Dubis, B. (2014). Production of biogas using maize silage supplemented with residual glycerine from biodiesel manufacturing, Archives of Environmental Protection, 40, 4, pp. 17-29. DOI:10.2478/aep-2014-0035.
  33. Shen, J., Zhang, J., Wang, W., Liu, G. & Chen, Ch. (2019). Assessment of pretreatment effects on anaerobic digestion of switchgrass: Economics-energy-environment (3E) analysis, Industrial Crops & Products, 145, 111957. DOI:10.1016/j.indcrop.2019.111957.
  34. Song, Z., Yang, G., Liu, X., Yan, Z., Yuan, Y. & Liao, Y. (2014). Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion, PLoS One, 2, 9. DOI:10.1371/journal.pone.0093801.
  35. Tian, W., Li, J., Zhu, L., Li, W., He, L., Gu, L., Deng, R., Shi, D., Chai, H. & Gao M. (2021). Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition, Renewable Energy, 177,pp. 21-32. DOI:10.1016/J.RENENE.2021.06.042.
  36. Van Soest P.J., Robertson J.B. & Lewis B.A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition, Journal of Dairy Science, 74, 10, pp. 3583–3597. DOI:10.3168/jds.S0022-0302(91)78551-2.
  37. Wang, D.L., Ai, P., Yu, L., Tan, Z.X. & Zhang, Y.L. (2015). Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation, Biosystems Engineering, 132, pp. 47-55. DOI:10.1016/j.biosystemseng.2015.02.007.
  38. Wu, Z., Nguyen, D., Lam, T.Y.C., Zhuang, H., Shrestha, S., Raskin, L., Khanal, S.K. & Lee, P.H. (2021). Synergistic association between cytochrome bd-encoded Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobic-anaerobic digestion of lignocellulosic biomass, WaterResearch, 15, 190, 116721. DOI:10.1016/j.watres.2020.116721.
  39. Yang, S., Sun, X., Jiang, X., Wang, L., Tian, J., Li, L., Zhao, M. & Zhong, Q. (2019). Characterization of the Tibet plateau Jerusalem artichoke (Helianthus tuberosus L.) transcriptome by de novo assembly to discover genes associated with fructan synthesis and SSR analysis, Hereditas, 6, 156, 9. DOI:10.1186/s41065-019-0086-8.
  40. Zhang, H., Khalid, H., Li, W., He, Y., Liu, G. & Chen, C. (2018a). Employing response surface methodology (RSM) to improve methane production from cotton stalk, Environmental science and pollution research international, 25,8, pp. 7618-7624. DOI:10.1007/s11356-017-0682-y.
  41. Zhang, H., Ning, Z., Khalid, H., Zhang, R., Liu, G. & Chen, C. (2018b). Enhancement of methane production from Cotton Stalk using different pretreatment techniques, Scientific reports, 8, 1, 3463. DOI:10.1038/s41598-018-21413-x.
  42. Zhang, H., Wang, L., Dai, Z., Zhang, R., Chen, C. & Liu, G. (2019). Effect of organic loading, feed-to-inoculum ratio, and pretreatment on the anaerobic digestion of tobacco stalks, Bioresource Technology, 298, 122474. DOI:10.1016/j.biortech.2019.122474.
  43. Zhao, C., Cui, X., Liu, Y., Zhang, R., He, Y., Wang, W., Chen, C. & Liu, G. (2017). Maximization of the methane production from durian shell during anaerobic digestion, Bioresource Technology, 238, pp. 433-438. DOI:10.1016/j.biortech.2017.03.184.

Date

2022.09.19

Type

Article

Identifier

DOI: 10.24425/aep.2022.142691

DOI

10.24425/aep.2022.142691

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×