### Details

#### Title

Kinematic synthesis of the mechanism for static balancing of an input torque in three positions#### Journal title

Archive of Mechanical Engineering#### Yearbook

2022#### Volume

vol. 69#### Issue

No 4#### Affiliation

Buśkiewicz, Jacek : Poznan University of Technology, Poznan, Poland#### Authors

#### Keywords

mechanism synthesis ; machine design ; discrete balancing ; torque balancing#### Divisions of PAS

Nauki Techniczne#### Coverage

571-594#### Publisher

Polish Academy of Sciences, Committee on Machine Building#### Bibliography

[1] V.H. Arakelian and S. Briot.*Balancing of Linkages and Robot Manipulators. Advanced Methods with Illustrative Examples*. Springer, 2015.

[2] P. Wang and Q. Xu. Design and modeling of constant-force mechanisms: A survey.

*Mechanism and Machine Theory*, 119:1–21, 2018. doi: 10.1016/j.mechmachtheory.2017.08.017.

[3] V. Arakelian and M. Mkrtchyan. Design of scotch yoke mechanisms with balanced input torque. In

*Proceedings of the ASME 2015 International Design Engineering Technical Conferences \amp Computers and Information in Engineering Conference IDETC/CIE 2015*, pages 1–5, Boston, Massachusetts, USA, 2–5 August, 2015. doi: 10.1115/DETC2015-46709.

[4] J.A. Franco, J.A. Gallego, and J.L. Herder. Static balancing of four-bar compliant mechanisms with torsion springs by exerting negative stiffness using linear spring at the instant center of rotation.

*Journal of Mechanisms and Robotics*, 13(3):031010–13, 2021. doi: 10.1115/1.4050313.

[5] B. Demeulenaere and J. De Schutter. Input torque balancing using an inverted cam mechanism.

*Journal of Mechanical Design*, 127(5):887–900, 2005. doi: 10.1115/1.1876452.

[6] D.A. Streit and E. Shin. Equilibrators for planar linkages.

*Journal of Mechanical Design*, 115(3):604–611, 1993. doi: 10.1115/1.2919233.

[7] Y. Liu, D.P. Yu, and J. Yao. Design of an adjustable cam based constant force mechanism.

*Mechanism and Machine Theory*, 103:85–97, 2016. doi: 10.1016/j.mechmachtheory.2016.04.014.

[8] J.L. Herder. Design of spring force compensation systems.

*Mechanism and Machine Theory*, 33(1-2):151–161, 1998. doi: 10.1016/S0094-114X(97)00027-X.

[9] S.R. Deepak and G.K. Ananthasuresh. Static balancing of a four-bar linkage and its cognates.

*Mechanism and Machine Theory*, 4:62–80, 2012. doi: 10.1016/j.mechmachtheory.2011.09.009.

[10] S. Perreault, P. Cardou, and C. Gosselin. Approximate static balancing of a planar parallel cable-driven mechanism based on four-bar linkages and springs.

*Mechanism and Machine Theory*, 79:64–79, 2014. doi: 10.1016/j.mechmachtheory.2014.04.008.

[11] J. Buśkiewicz. The optimum distance function method and its application to the synthesis of a gravity balanced hoist.

*Mechanism and Machine Theory*, 139:443–459, 2019. doi: 10.1016/j.mechmachtheory.2019.05.006.

[12] V.L. Nguyen. A design approach for gravity compensators using planar four-bar mechanisms and a linear spring.

*Mechanism and Machine Theory*, 172:104770, 2022. doi: 10.1016/j.mechmachtheory.2022.104770.

[13] R. Barents, M. Schenk, W.D. van Dorsser, B.M. Wisse, and J.L. Herder. Spring-to-spring balancing as energy-free adjustment method in gravity equilibrators.

*Journal of Mechanical Design*, 133(6):689–700, 2011. doi: 10.1115/DETC2009-86770.

[14] I. Simionescu and L. Ciupitu. The static balancing of the industrial robot arms, Part I: discrete balancing.

*Mechanism and Machine Theory*, 35(9):1287–1298, 2001. doi: 10.1016/S0094-114X(99)00067-1.

[15] A.G. Erdman and G.N. Sandor.

*Mechanism Design: Analysis and Synthesis*, Vol. 1, 4th ed., Prentice-Hall, Upper Saddle River, NJ, 2001.

[16] G.N. Sandor and A.G. Erdman.

*Advanced Mechanism Design: Analysis and Synthesis*, Vol. 2, Prentice Hall, Englewood Cliffs, NJ, 1997.

[17] J.M. McCarthy and G.S. Soh.

*Geometric Design of Linkages*, Vol. 11, Springer, New York, 2011.

[18] H. Kaustubh, J. Sonawale, and J.M. McCarthy. A design system for six-bar linkages integrated with a solid modeler.

*Journal of Computing and Information Science in Engineering*, 15(4):041002, 2015. doi: 10.1115/1.4030940.

[19] J. Han and W. Liu. On the solution of eight-precision-point path synthesis of planar four-bar mechanisms based on the solution region methodology.

*Journal of Mechanisms and Robotics*, 11(6):064504, 2019. doi: 10.1115/1.4044544.

[20] C.W. Wampler, A.P. Morgan, and A.J. Sommese. Complete solution of the nine-point path synthesis problem for four-bar linkages.

*Journal of Mechanical Design*, 114(1):153–159, 1992. doi: 10.1115/1.2916909.

[21] W. Guo and X. Wang. Planar linkage mechanism design for bi-objective of trajectory and velocity.

*J Beijing Univ Aero Astronautics*, 35(12):1483–1486, 2009.

[22] J. Han, W. Qian, and H. Zhao. Study on synthesis method of $\lambda$-formed 4-bar linkages approximating a straight line.

*Mechanism and Machine Theory*, 44(1):57–65, 2009. doi: 10.1016/j.mechmachtheory.2008.02.011.

[23] J.E. Holte, T.R. Chase, and A.G. Erdman. Approximate velocities in mixed exact-approximate position synthesis of planar mechanisms.

*Journal of Mechanical Design*, 123(3):388–394, 2001. doi: 10.1115/1.1370978.

[24] W.T. Lee and K. Russell. Developments in quantitative dimensional synthesis (1970–present): Four-bar path and function generation.

*Inverse Problems in Science and Engineering*, 26(9):1280–1304, 2017. doi: 10.1080/17415977.2017.1396328.

[25] C. Wampler and A. Sommese, Numerical algebraic geometry and algebraic kinematics.

*Acta Numerica*, 20:469–567, 2011. doi: 10.1017/S0962492911000067.

[26] D.A. Brake, J.D. Hauenstein, A.P. Murray, D.H. Myszka, and C.W. Wampler. The complete solution of alt-burmester synthesis problems for four-bar linkages.

*Journal of Mechanisms and Robotics*, 8(4): 041018, 2016. doi: 10.1115/1.4033251.

[27] J. Buśkiewicz, 2019, Gravity balancing of a hoist by means of a four-bar linkage and spring. In:

*Advances in Mechanism and Machine Science: Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science*, pages 1721–1730, Cracow, Poland, June, 2019. doi: 10.1007/978-3-030-20131-9_170.

[28] J. Buśkiewicz. Solution data, the code of algorithm 6dv2s_II in Mathematica wolfram 8.0 and pdf file of the code, the figures of the spring extensions and the rates of the spring extensions for all the cases. Mendeley Data, V3, 2022, https://data.mendeley.com/datasets/sb38dsw6vm/3.