Details

Title

Modeling of the axial crumpling of conical shells

Journal title

Archive of Mechanical Engineering

Yearbook

2022

Volume

vol. 69

Issue

No 4

Affiliation

Kiter, Riyah N. : Department of Mechanical Engineering, College of Engineering, University of Anbar, Iraq ; Abbood, Mazin Y. : Department of Mechanical Engineering, College of Engineering, University of Anbar, Iraq ; Hassoon, Omar H. : Department of Production and Metallurgy Engineering, University of Technology, Baghdad, Iraq

Authors

Keywords

axial crushing ; concertina ; eccentricity ; ABAQUS ; inward folding

Divisions of PAS

Nauki Techniczne

Coverage

615-628

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] F.C. Bardi and S. Kyriakides. Plastic buckling of circular tubes under axial compression–part I: Experiments. International Journal of Mechanical Sciences, 48(8):830–841, 2006. doi: 10.1016/j.ijmecsci.2006.03.005.
[2] J.M. Alexander. An approximate analysis of the collapse of thin cylindrical shells under axial loading. The Quarterly Journal of Mechanics and Applied Mathematics, 13(1):10–15, 1960. doi: 10.1093/qjmam/13.1.10.
[3] A.A.K. Mohammed, M.N. Alam, and R. Ansari. Quasi-static study of thin aluminium frusta with linearly varying wall-thickness. International Journal of Crashworthiness, 25(5):473–484, 2020. doi: 10.1080/13588265.2019.1613762.
[4] A. Shiravand and M. Asgari. Hybrid metal-composite conical tubes for energy absorption; theoretical development and numerical simulation. Thin-Walled Structures, 145:106442, 2019. doi: 10.1016/j.tws.2019.106442.
[5] P. Sadjad, E.M. Hossein, and E.M. Sobhan. Crashworthiness of double-cell conical tubes with different cross sections subjected to dynamic axial and oblique loads. Journal of Central South University, 25:632–645, 2018. doi: 10.1007/s11771-018-3766-z.
[6] G. Lu , J.L. Yu , J.J. Zhang, and T.X. Yu. Alexander revisited: upper- and lower-bound approaches for axial crushing of a circular tube. International Journal of Mechanical Sciences, 206:106610, 2021. doi: 10.1016/j.ijmecsci.2021.106610.
[7] A. Sadighi, A. Eyvazian, M. Asgari, and A.M. Hamouda. A novel axially half corrugated thin-walled tube for energy absorption under axial loading. Thin-Walled Structures, 145:106418, 2019. doi: 10.1016/j.tws.2019.106418.
[8] M.Y. Abbood, and R.N. Kiter. On the peak quasi-static load of axisymmetric buckling of circular tubes. International Journal of Crashworthiness, 27(2):367–375, 2022. doi: 10.1080/13588265.2020.1807679.
[9] T. Wierzbicki, S.U. Bhat, W. Abramowicz, and D. Brodkin. Alexander revisited–-A two folding elements model of progressive crushing of tubes. International Journal of Solids and Structures, 29(4):3269–3288, 1992. doi: 10.1016/0020-7683(92)90040-Z.
[10] A.A. Singace, H. Elsobky, and T.Y. Reddy. On the eccentricity factor in the progressive crushing of tubes. International Journal of Solids and Structures, 32(24):3589-3602, 1995. doi: 10.1016/0020-7683(95)00020-B.
[11] H.E. Postlethwaite and B. Mills. Use of collapsible structural elements as impact isolators, with special reference to automotive applications. The Journal of Strain Analysis for Engineering Design, 5(1):58–73,1970. doi: 10.1243/03093247V051058.
[12] A.G. Mamalis, D.E. Manolakos, S. Saigal, G. Viegelahn, and W. Johnson. Extensible plastic collapse of thin-wall frusta as energy absorbers. International Journal of Mechanical Sciences, 28(4):219–229, 1986. doi: 10.1016/0020-7403(86)90070-6.
[13] A.G. Mamalis, D.E. Manolakos, G.L. Viegelahn, and W. Johnson. The modeling of the progressive extensible plastic collapse of thin-wall shells. International Journal of Mechanical Sciences, 30(3-4):249–261, 1988. doi: 10.1016/0020-7403(88)90058-6.
[14] N.K. Gupta, G.L. Prasad, and S.K. Gupta. Plastic collapse of metallic conical frusta of large semi-apical angles. International Journal of Crashworthiness, 2(4):349–366, 1997. doi: 10.1533/cras.1997.0054.
[15] A.A.A. Alghamdi, A.A.N. Aljawi, and T.M.N. Abu-Mansour. Modes of axial collapse of unconstrained capped frusta. International Journal of Mechanical Sciences, 44(6):1145–1161, 2002. doi: 10.1016/S0020-7403(02)00018-8.
[16] N.M. Sheriff, N.K. Gupta, R. Velmurugan, and N. Shanmugapriyan. Optimization of thin conical frusta for impact energy absorption. Thin-Walled Structures, 46(6):653–666, 2008. doi: 10.1016/j.tws.2007.12.001.

Date

15.11.2022

Type

Article

Identifier

DOI: 10.24425/ame.2022.143096
×