Details
Title
Numerical simulations of a simple refractive index sensor based on side-hole optical fibresJournal title
Opto-Electronics ReviewYearbook
2022Volume
30Issue
4Authors
Affiliation
Dudek, Michał : Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland ; Köllő, Kinga.K. : Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, PolandKeywords
fibre optic sensor ; finite-difference time-domain method ; numerical simulations ; refractive index ; side-hole optical fibreDivisions of PAS
Nauki TechniczneCoverage
e143607Publisher
Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of TechnologyBibliography
- Grattan, K. T. V. & Sun, T. Fibre optic sensor technology: an overview. Actuator A Phys. 82, 40–61 (2000). https://doi.org/10.1016/S0924-4247(99)00368-4
- Zhou, X., Zhang, L. & Pang, W. Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection. Express 24, 18197–18208 (2016). https://doi.org/10.1364/OE.24.018197
- Rao, Y.-J. & Ran, Z.-L. Optic fibre sensors fabricated by laser-micromachining. Fiber Technol. 19 808–821 (2013). https://doi.org/10.1016/j.yofte.2013.07.016
- Wang, Y., Liao, C. R. & Wang, D. N. Femtosecond laser-assisted selective infiltration of microstructured optical fibres. Express 18, 18056–18060 (2010). https://doi.org/10.1364/OE.18.018056
- Pallarés-Aldeiturriaga, D., Roldán-Varona, P., Rodríguez-Cobo, L. & López-Higuera, J. M. Optical fibre sensors by direct laser processing: A review. Sensors 20, 6971 (2020). https://doi.org/10.3390/s20236971
- Kumar, A., Pankaj, V. & Poonam, J. Refractive index sensor for sensing high refractive index bioliquids at the THz frequency. Opt. Soc. Am. B 38, F81–F89 (2021). https://doi.org/10.1364/JOSAB.438367
- Pérez, M. A., González, O. & Arias, J. R., Optical Fibre Sensors for Chemical and Biological Measurements. in Current Developments in Optical Fibre Technology (eds. Harun, S. W. & Arof, H.) (IntechOpen, 2013). https://doi.org/10.5772/52741
- Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634–644 (2016). https://doi.org/1039/C5LC01445J
- Leal-Junior, A. G. et al. Polymer optical fibre sensors in healthcare applications: A comprehensive review. Sensors 19, 3156 (2019). https://doi.org/10.3390/s19143156
- Yan, X., Li, H. & Su, X. Review of optical sensors for pesticides. Trends Analyt. Chem. 103, 1–20 (2018). https://doi.org/10.1016/j.trac.2018.03.004
- Joe, H. E., Yun, H., Jo, S.-H., Jun, M. G. & Min, B.-K. A review on optical fibre sensors for environmental monitoring. Int. J. Pr. Eng. Man-Gt. 5, 173–191 (2018). https://doi.org/10.1007/s40684-018-0017-6
- Costa, G. K. B. et al. In-fibre Fabry-Perot interferometer for strain and magnetic field sensing. Express 24, 14690–14696 (2016). https://doi.org/10.1364/OE.24.014690
- Zhou, N. et al. MEMS-based reflective intensity-modulated fibre-optic sensor for pressure measurements. Sensors 15, 2233 (2020). https://doi.org/3390/s20082233
- Pevec, S. & Donlagic, D. Multiparameter fibre-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature. IEEE Photon. J. 9, 1–14 (2017). https://doi.org/10.1109/JPHOT.2017.2651978
- Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluoro-butyl acrylate-coated tapered optical fibres. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
- Pura, P. et al. Polymer microtips at different types of optical fibres as functional elements for sensing applications. Light. Technol. 3, 2398–2404 (2015). https://doi.org/10.1109/JLT.2014.2385961
- Marć, P., Żuchowska, M. & Jaroszewicz, L. Reflective properties of a polymer micro-transducer for an optical fibre refractive index sensor. Sensors 20, 6964 (2020). https://doi.org/10.3390/s20236964
- Marć, P., Żuchowska, M., Jakubowska, I. & Jaroszewicz, L. R. Polymer microtip on a multimode optical fibre as a threshold volatile organic compounds sensor. Sensors 22, 1246 (2022). https://doi.org/10.3390/s22031246
- Tian, Z., Yam, S. S. H. & Loock, H. P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fibre. Lett. 33, 1105–1107 (2008). https://doi.org/10.1364/OL.33.001105
- Ran, Z., Rao, Z., Zhang, J., Liu, Z. & Xu, B. A Miniature fibre-optic refractive-index sensor based on laser-machined fabry–perot interferometer tip. Light. Technol. 27, 5426–5429 (2009). https://doi.org/10.1109/JLT.2009.2031656
- Wei, T., Han, Y., Li, Y., Tsai, H. L. &. Xiao, H. Temperature-insensitive miniaturized fibre inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Express 16, 5764–5769 (2008). https://doi.org/10.1364/OE.16.005764
- Enokihara, A., Izutsu, M. & Sueta, T. Optical fibre sensors using the method of polarization-rotated reflection. Light. Technol. 5, 1584–1590 (1987). https://doi.org/10.1109/JLT.1987.1075449
- Zheng, Y., Li, J., Liu, Y., Li, Y. & Qu, S. Dual-parameter demodu-lated torsion sensor based on the Lyot filter with a twisted polarization-maintaining fibre. Express 30, 2288–2298, (2022). https://doi.org/10.1364/OE.448088
- Jin, W. et al. Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibres. Photonic Sens. 11, 141–157 (2021). https://doi.org/10.1007/s13320-021-0627-4
- Xie, H. M., Dabkiewicz, Ph., Ulrich, R. & Okamoto, K. Side-hole fibre for fibre-optic pressure sensing. Lett. 11, 333–335 (1986). https://doi.org/10.1364/OL.11.000333
- Bao, L., Dong, X., Shum, P. P. & Shen, C. High sensitivity liquid level sensor based on a hollow core fibre structure. Commun. 499, 127279 (2019). https://doi.org/10.1016/j.optcom.2021.127279
- Lin, H., Liu, F., Guo, H., Zhou A. & Dai, Y. Ultra-highly sensitive gas pressure sensor based on dual side-hole fibre interferometers with Vernier effect. Express 26, 28763–28772 (2018). https://doi.org/10.1364/OE.26.028763
- Taflove, A. & Hagness, S. C. Computational Electrodynamics – The Finite-Difference Time-Domain Method – 3rd Edition. (Artech House, 2005). https://us.artechhouse.com/Computational-Electrodynamics-Third-Edition-P1929.aspx
- Bird, T. S. Definition and misuse of return loss [Report of the Transactions Editor-in-Chief]. IEEE Antennas Propag. Mag. 51, 166–167 (2009). https://doi.org/10.1109/MAP.2009.5162049