Details
Title
Application of genetic algorithm for double-lap adhesive joint designJournal title
Archive of Mechanical EngineeringYearbook
2023Volume
vol. 70Issue
No 1Authors
Affiliation
Kurennov, Sergei : National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine ; Barakhov, Konstantin : National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine ; Polyakov, Olexander : National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine ; Taranenko, Igor : National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, UkraineKeywords
adhesive joint ; genetic algorithm ; optimization ; finite difference method ; Goland-Reissner modelDivisions of PAS
Nauki TechniczneCoverage
27-42Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, and J.K. Spelt. Analytical models of adhesively bonded joints. Part I: Literature survey. International Journal of Adhesion and Adhesives, 29(3):319–330, 2009. doi: 10.1016/j.ijadhadh.2008.06.005.[2] E.H. Wong and J. Liu. Interface and interconnection stresses in electronic assemblies – A critical review of analytical solutions. Microelectronics Reliability, 79:206–220, 2017. doi: 10.1016/j.microrel.2017.03.010.
[3] S. Budhe, M.D. Banea, S. de Barros, and L.F.M. da Silva. An updated review of adhesively bonded joints in composite materials. International Journal of Adhesion and Adhesives, 72:30–42, 2017. doi: 10.1016/j.ijadhadh.2016.10.010.
[4] K.P. Barakhov and I.M. Taranenko. Influence of joint edge shape on stress distribution in adhesive film. In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds) Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, 367:123–132, Springer, Cham, 2022. doi: 10.1007/978-3-030-94259-5_12.
[5] H. Lee, S. Seon, S. Park, R. Walallawita, and K. Lee. Effect of the geometric shapes of repair patches on bonding strength. The Journal of Adhesion, 97(3):1–18, 2019. doi: 10.1080/00218464.2019.1649660.
[6] F. Ramezani, M.R. Ayatollahi, A. Akhavan-Safar, and L.F.M. da Silva. A comprehensive experimental study on bi-adhesive single lap joints using DIC technique. International Journal of Adhesion and Adhesives, 102:102674, 2020. doi: 10.1016/j.ijadhadh.2020.102674.
[7] Ya.S. Karpov. Jointing of high-loaded composite structural components. Part 2. Modeling of stress-strain state. Strength of Materials, 38(5):481–491, 2006. doi: 10.1007/s11223-006-0067-9.
[8] J. Kupski and S. Teixeira de Freitas. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures. Composite Structures, 268:113923, 2021. doi: 10.1016/j.compstruct.2021.113923.
[9] S. Amidi and J. Wang. An analytical model for interfacial stresses in double-lap bonded joints. The Journal of Adhesion, 95(11):1031–1055, 2018. doi: 10.1080/00218464.2018.1464917.
[10] H. Kumazawa and T. Kasahara. Analytical investigation of thermal and mechanical load effects on stress distribution in adhesive layer of double-lap metal-composite bonded joints. Advanced Composite Materials, 28(4):425–444, 2019. doi: 10.1080/09243046.2019.1575028.
[11] S. Kurennov and N. Smetankina. Stress-strain state of a double lap joint of circular form. Axisymmetric model. In: M. Nechyporuk, V. Pavlikov D. Kritskiy (eds) Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, 367:36–46, Springer, Cham, 2022. doi: 10.1007/978-3-030-94259-5_4.
[12] S. E. Stapleton, B. Stier, S. Jones, A. Bergan, I. Kaleel, M. Petrolo, E. Carrera, and B.A. Bednarcyk. A critical assessment of design tools for stress analysis of adhesively bonded double lap joints. Mechanics of Advanced Materials and Structures, 28(8):791–811, 2019. doi: 10.1080/15376494.2019.1600768.
[13] R.H. Kaye and M. Heller. Through-thickness shape optimisation of bonded repairs and lap-joints. I nternational Journal of Adhesion and Adhesives, 22(1):7–21, 2002. doi: 10.1016/s0143-7496(01)00029-x.
[14] S. Kurennov, K. Barakhov, I. Taranenko, and V. Stepanenko. A genetic algorithm of optimal design of beam at restricted sagging. Radioelectronic and Computer Systems, 1:83–91, 2022. doi: 10.32620/reks.2022.1.06.
[15] V.S. Symonov, I.S. Karpov, and J. Juračka. Optimization of a panelled smooth composite shell with a closed cross-sectional contour by using a genetic algorithm. Mechanics of Composite Materials, 49(5):563–570, 2013. doi: 10.1007/s11029-013-9372-0.
[16] N.S. Kulkarni, V.K. Tripathi. Variable thickness approach for finding minimum laminate thickness and investigating effect of different design variables on its performance. Archive of Mechanical Engineering, 65(4):527–551, 2018. doi: 10.24425/ame.2018.125441.
[17] H. Ejaz, A. Mubashar, I.A. Ashcroft, E. Uddin, and M. Khan. Topology optimisation of adhesive joints using non-parametric methods. International Journal of Adhesion and Adhesives, 81:1–10, 2018. doi: 10.1016/j.ijadhadh.2017.11.003.
[18] H.L. Groth and P. Nordlund. Shape optimization of bonded joints. International Journal of Adhesion and Adhesives, 11(4):204–212, 1991. doi: 10.1016/0143-7496(91)90002-y.
[19] R.Q. Rodríguez, R. Picelli, P. Sollero, and R. Pavanello. Structural shape optimization of bonded joints using the ESO method and a honeycomb-like mesh. J ournal of Adhesion Science and Technology, 28(14-15):1451–1466, 2014. doi: 10.1080/01694243.2012.698112.
[20] E.G. Arhore, M. Yasaee, and I. Dayyani. Comparison of GA and topology optimization of adherend for adhesively bonded metal composite joints. International Journal of Solids and Structures, 226-227:111078, 2021. doi: 10.1016/j.ijsolstr.2021.111078.
[21] S. Kumar, and de A. de Tejada Alvarez. Modeling of geometrically graded multi-material single-lap joints. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. doi: 10.2514/6.2015-1885.
[22] S.S. Kurennov: Refined mathematical model of the stress state of adhesive lap joint: experimental determination of the adhesive layer strength criterion. Strength of Materials, 52:779–789, 2020. doi: 10.1007/s11223-020-00231-5.
[23] P. Zou, J. Bricker, and W. Uijttewaal. Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation – genetic algorithm. Marine Structures, 74:102807, 2020. doi: 10.1016/j.marstruc.2020.102807.
[24] O. Coskun and H.S.Turkmen. Multi-objective optimization of variable stiffness laminated plates modeled using Bézier curves. Composite Structures, 279:114814, 2022. doi: 10.1016/j.compstruct.2021.114814.
[25] S. Kumar and P.C. Pandey. Behaviour of bi-adhesive joints. Journal of Adhesion Science and Technology, 24(7):1251–1281, 2010. doi: 10.1163/016942409x12561252291982.
[26] Ö. Öz and H. Özer. On the von Mises elastic stress evaluations in the bi-adhesive single-lap joint: a numerical and analytical study. Journal of Adhesion Science and Technology, 28(21):2133–2153, 2014. doi: 10.1080/01694243.2014.948110.
[27] E. Selahi. Elasticity solution of adhesive tubular joints in laminated composites with axial symmetry. Archive of Mechanical Engineering, 65(3):441–456, 2018. doi: 10.24425/124491.
[28] K. Barakhov, D. Dvoretska, and O. Poliakov. One-dimensional axisymmetric model of the stress state of the adhesive joint. In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds) I ntegrated Computer Technologies in Mechanical Engineering – 2020. ICTM 2020. Lecture Notes in Networks and Systems, 188:310–319, Springer, Cham, 2021. doi: 10.1007/978-3-030-66717-7_26.
[29] S. Kurennov, N. Smetankina, V. Pavlikov, D. Dvoretskaya, V. Radchenko. Mathematical model of the stress state of the antenna radome joint with the load-bearing edging of the skin cutout. In: D.D. Cioboată, (ed.) International Conference on Reliable Systems Engineering (ICoRSE) – 2021. ICoRSE 2021. Lecture Notes in Networks and Systems, 305:287–295, Springer, Cham, 2022. doi: 10.1007/978-3-030-83368-8_28.