Details
Title
Low waste technology for the removal of nitrates from waterJournal title
Archives of Environmental ProtectionYearbook
2023Volume
vol. 49Issue
No 1Authors
Affiliation
Trus, Inna : National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine ; Gomelya, Mukola : National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine ; Halysh, Vita : National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine ; Tverdokhlib, Mariia : National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine ; Makarenko, Iryna : National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine ; Pylypenko, Tetiana : National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine ; Chuprinov, Yevhen : State University of Economics and Technology: Kryvyi Rih, Ukraine ; Benatov, Daniel : National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine ; Zaitsev, Hennadii : State University of Economics and Technology: Kryvyi Rih, UkraineKeywords
mineral fertilizers ; ion exchange ; nitrates ; low-waste technologies ; anioniteDivisions of PAS
Nauki TechniczneCoverage
74-78Publisher
Polish Academy of SciencesBibliography
- Alguacil-Duarte, F., González-Gómez, F. & Romero-Gámez, M. (2022). Biological nitrate removal from a drinking water supply with an aerobic granular sludge technology: An environmental and economic assessment. Journal of Cleaner Production, 367. DOI:10.1016/j.jclepro.2022.133059
- Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review. Archives of Environmental Protection, 45, 4, pp. 4–19. DOI:10.24425 / aep.2019.130237.
- Boubakri, A., Al-Tahar Bouguecha, S. & Hafiane, A. (2022). FO–MD integrated process for nitrate removal from contaminated groundwater using seawater as draw solution to supply clean water for rural communities. Separation and Purification Technology, 298. DOI:10.1016/j.seppur.2022.121621
- Gutiérrez, M., Biagioni, R.N., Alarcón-Herrera, M.T. & Rivas- Lucero, B.A. (2018). An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of the Total Environment, 624, pp. 1513–1522. DOI:10.1016/j. scitotenv.2017.12.252
- Hansen, B., Sonnenborg, T.O., Møller, I., Bernth, J.D., Høyer, A., Rasmussen, P., Sandersen P.B.E. & Jørgensen, F. (2016). Nitrate vulnerability assessment of aquifers. Environmental Earth Sciences, 75, 12. DOI:10.1007/s12665-016-5767-2
- Kaushal, S.S. (2016). Increased salinization decreases safe drinking water. Environ. Sci. Technol., 50, pp. 2765–2766. doi:10.1021/ acs.est.6b00679.
- Królak, E. & Raczuk, J. (2018). Nitrate concentration-related safety of drinking water from various sources intended for consumption by neonates and infants. Archives of Environmental Protection, 44, 1, pp. 3–9. DOI:10.24425/118176
- National report on drinking water quality and drinking water supply in Ukraine in 2021. Database ‘Ministry of Regional Development of Ukraine’ (in Ukrainian).
- Nujić, M., Milinković, D. & Habuda-Stanić, M. (2017). Nitrate removal from water by ion exchange. Croatian journal of food science and technology, 9, 2, pp. 182–186. DOI:10.17508/ CJFST.2017.9.2.15
- Preetham, V. & Vengala, J. (2023). Adsorption isotherm, kinetic and thermodynamic studies of nitrates and nitrites onto fish scales. In Recent Advances in Civil Engineering, pp. 429–442. doi:10.1007/978-981-19-1862-9_27
- Remeshevska, I., Trokhymenko, G., Gurets, N., Stepova, O., Trus, I. & Akhmedova, V. (2021). Study of the ways and methods of searching water leaks in water supply networks of the settlements of Ukraine. Ecological Engineering and Environmental Technology, 22, 4, pp. 14–21. DOI:10.12912/27197050/137874
- Song, Q., Zhang, S., Hou, X., Li, J., Yang, L., Liu, X. & Li, M. (2022). Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO2 nanotube array by highly dispersed trace cu doping. Journal of Hazardous Materials, 438. DOI:10.1016/j. jhazmat.2022.129455
- Trus, I., Gomelya, M., Skiba, M., Pylypenko, T. & Krysenko, T. (2022). Development of Resource-Saving Technologies in the use of sedimentation inhibitors for reverse osmosis installations. J. Ecol. Eng., 23(1), pp. 206–215. DOI:10.12911/22998993/144075
- Trus, I. (2022). Optimal conditions of ion exchange separation of anions in low-waste technologies of water desalination. Journal of Chemical Technology and Metallurgy, 57, 3, pp. 550–558.
- Trusa, I. M., Gomelya, M. D. & Tverdokhlib, M. M. (2021). Evaluation of the contribution of ion exchange in the process of demanganization with modified cation exchange resin ku-2- 8. Journal of Chemistry and Technologies, 29, 4, pp. 540–548. DOI:10.15421/jchemtech.v29i4.242561
- Trus, I. & Gomelya, M. (2022). Low-waste technology of water purification from nitrates on highly basic anion exchange resin. Journal of Chemical Technology and Metallurgy, 57, 4, pp. 765–772. https://dl.uctm.edu/journal/node/j2022-4/14_21- 93_br4_2022_pp765-772.pdf
- Trusb, I., Gomelya, M., Skiba, M. & Vorobyova, V. (2021). Promising method of ion exchange separation of anions before reverse osmosis. Archives of Environmental Protection, 47, 4, pp. 93–97. DOI:10.24425/aep.2021.139505
- Trus, I., Gomelya, N., Halysh, V., Radovenchyk, I., Stepova, O. & Levytska, O. (2020). Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3(6–105), pp. 21–27. DOI:10.15587/1729-4061.2020.206443 Vasilache, N., Cruceru, L., Petre, J., Chiriac, F. L., Paun, I., Niculescu, M., Pirvu F. & Lupu, G. (2018). The removal of nitrate from drinking water, natural water by ion exchange using ion exchange resin, purolite A520E and A500. Iternational Symposium “The Environment and the Industry”, SIMI 2018, Proceedings Book DOI:10.21698/simi.2018.fp53 Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management, 277. DOI:10.1016/j.jenvman.2020.111330 Ward, M.H., Jones, R.R., Brender, J.D., de Kok, T.M., Weyer, P. J., Nolan, B. T., Vilanueva C.M. & van Breda, S.G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 7. DOI:10.3390/ijerph15071557 Wiśniowska, E. & Włodarczyk-Makuła, M. (2020). Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/ precipitation process. Archives of Environmental Protection, 46, 3, pp. 22–29. DOI: 10.24425 / aep.2020.134532.
- Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province. Poland. Archives of Environmental Protection, 48, 1, pp. 41–57. DOI:10.24425/aep.2022.140544
Date
17.03.2023Type
ArticleIdentifier
DOI: 10.24425/aep.2023.144739DOI
10.24425/aep.2023.144739Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science