Tytuł artykułu

Studying the thermo-gas-dynamic process in a muzzle brake compensator

Tytuł czasopisma

Archive of Mechanical Engineering




vol. 70


No 2


Nguyen, Dung Van : Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam ; Bui, Viet Quy : Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam ; Nguyen, Dung Thai : Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam ; Uong, Quyen Si : Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam ; Truong, Hieu Tu : Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam


Słowa kluczowe

thermo-gas dynamic ; muzzle device ; muzzle brake compensator ; automatic gun

Wydział PAN

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] V.V. Alferov. Design and Calculation of Automatic Weapons. Moscow, Mechanical Engineering, 1977 (in Russian).
[2] M. Stiavnicky and P. Lisy. Influence of barrel vibration on the barrel muzzle position at the moment when bullet exits barrel. Advances in Military Technology, 8(1):89–102, 2013.
[3] D.M. Hung. Study on the dynamics of the AGS-17 30mm grenade launcher and the effect of some structural factors on gun stability when fired. PhD Thesis, Military Technical Academy, Hanoi, 2016 (in Vietnamese).
[4] J. Balla. Contribution to determining of load generated by shooting from automatic weapons. International Conference on Military Technologies (ICMT), pages 1–6, Brno, Czech Republic, 30-31 May 2019. doi: 10.1109/MILTECHS.2019.8870116.
[5] V.B. Vo, J. Balla, H.M. Dao, H.T. Truong, D.V. Nguyen, and T.V. Tran. Firing stability of automatic grenade launcher mounted on tripod. International Conference on Military Technologies (ICMT), pages 1–8, Brno, Czech Republic, August 2021. doi: 10.1109/ICMT52455.2021.9502836.
[6] M. Macko, B.V. Vo, and Q.A. Mai. Dynamics of short recoil-operated weapon. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 12(3):9–26, 2021. doi: 10.5604/01.3001.0015.2432.
[7] N.T. Dung, N.V. Dung, T.V. Phuc, and D.D. Linh. biomechanical analysis of the shooter-weapon system oscillation. International Conference on Military Technologies (ICMT), Brno, Czech Republic, pages 48–53, 2017. doi: 10.1109/MILTECHS.2017.7988729.
[8] V.B. Vo, M. Macko, and H.M. Dao. Experimental study of automatic weapon vibrations when burst firing. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 12(4):9–28, 2012. doi: 10.5604/01.3001.0015.5984.
[9] T.D. Van, T.L. Minh, D.N. Thai, D.T. Cong, and P.V. Minh. The application of the design of the experiment to investigate the stability of special equipment. Mathematical Problems in Engineering, 2022: 8562602, 2022. doi: 10.1155/2022/8562602.
[10] Instructions on shooting. Gun shooting basics. 7.62 mm Modernized Kalashnikov assault rifle (AKM and AKMS), 7.62 mm Kalashnikov light machine gun (RPK and RPKS), 7.62 mm Kalashnikov machine gun (PK, PKS, PKB and PKT), 9 mm Makarov pistol. Hand grenades. Military Publishing House of the USSR Ministry of Defense, 1973 (in Russian).
[11] D.N. Zhukov, V.V. Chernov, and M.V. Zharkov. Development of an algorithm for calculating muzzle devices in the CFD package, Fundamentals of ballistic design. All-Russian Scientific and Technical Conference, St. Petersburg, pages 126-129, 2012. (in Russian).
[12] R. Cayzac, E. Carette, and T. Alziary de Roquefort. 3D unsteady intermediate ballistics modelling: Muzzle brake and sabot separation, In Proceedings of the 24th International Symposium on Ballistics, New Orleans, LA, USA, pages 423–430, 2008.
[13] J.S. Li, M. Qiu, Z.Q. Liao, D.P. Xian, and J. Song. Dynamic modeling and simulation of Gatling gun with muzzle assistant-rotating and recoil absorber. Acta Armamentarii, 35(9):1344–1349, 2014. doi: 10.3969/j.issn.1000-1093.2014.09.003.
[14] N.A. Konovalov, O.V. Pilipenko, Yu.A. Kvasha, G.A. Polyakov, A.D. Skorik, and V.I. Kovalenko. On thermo-gas-dynamic processes in devices for reducing the sound level of a small arms shot. Technical Mechanics, pp. 69-81, 2011 (in Russian).
[15] E.N. Patrikov. Mathematical modeling of the functioning process of service weapons in the mode of non-lethal action. Technical Sciences, News of TulGU, pp. 33-39, 2012 (in Russian).
[16] X.Y. Zhao, K.D. Zhou, L. He, Y. Lu, J. Wang, and Q. Zheng. Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake. Shock and Vibration, 2019: 5938034, 2019. doi: 10.1155/2019/5938034.
[17] P.F. Li and X.B. Zhang. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion. Defence Technology, 17(4):1178–1189, 2021. doi: 10.1016/j.dt.2020.06.019.
[18] H.H. Zhang, Z.H. Chen, X.H. Jiang, and H.Zh. Li. Investigations on the exterior flow field and the efficiency of the muzzle brake. Journal of Mechanical Science and Technology, 27: 95–101, 2013. doi: 10.1007/s12206-012-1223-8.
[19] I. Semenov, P. Utkin, I. Akhmedyanov, I. Menshov, and P. Pasynkov. Numerical investigation of near-muzzle blast levels for perforated muzzle brake using high performance computing. International Conference "Parallel and Distributed Computing Systems" PDCS 2013, pages 281–289, Ukraine, Kharkiv, March 13-14, 2013. (in Russian).
[20] S.Q. Uong. Investigating the effect of gas compensator combined with brake device on the stability of automatic hand-held weapons when firing in series by experiment. Military Technical and Technological Science Research, 23:80–83, 2008. (in Vietnamese).
[21] L.E. Mikhailov. Designs of Small Automatic Arms Weapons. Central Research Institute of Information, USSR, 1984. (in Russian).
[22] Theory and Calculation of Automatic Weapons. V.M. Kirillov (editor). Penza: PVAIU, 1973. (in Russian).
[23] V.I. Kulagin and V.I. Cherezov. Gas Dynamics of Automatic Weapons. Central Research Institute of Information, USSR, 1985. (in Russian).
[24] Yu.P. Platonov. Thermo-gas-dynamics of Automatic Weapons. Mechanical Engineering, USSR, 2009. (in Russian).
[25] M.I. Gurevich. Theory of Jets of an Ideal Fluid. Fizmatgiz, USSR, 1961. (in Russian).
[26] Guiding Technical Material, Small Arms, Methods of Thermo-Gas-Dynamic Calculations. RTM-611-74, 1975. (in Russian).






DOI: 10.24425/ame.2023.145584 ; e-ISSN 2300-1895