Sludge-derived biochar: A review on the influence of synthesis conditions on environmental risk reduction and removal mechanism of wastewater pollutants

Journal title

Archives of Environmental Protection




vol. 49


No 2


Lv, Ming Yi : Shenyang University of Chemical Technology, China ; Yu, Hui Xin : Shenyang University of Chemical Technology, China ; Shang, Xiao, Yuan : Shenyang University of Chemical Technology, China



adsorption ; sludge biochar ; AOPs ; co-pyrolysis

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


  1. Antunes, E., Jacob, M. V., Brodie, G. & Schneider, P. A. (2018).Microwave pyrolysis of sewage biosolids: Dielectric properties, microwave susceptor role and its impact on biochar properties. Journal of Analytical and Applied Pyrolysis, 129, 93-100. DOI:10.1016/j.jaap.2017.11.023.
  2. Bogacki, J.P. & Al-Hazmi, H. (2017). Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes. Archives of Environmental Protection, 43 (3), pp. 24–31. DOI:10.1515/aep-2017-002
  3. Borgulat, A., Zgórska. A. & Głodniok, M. (2022). Comparison of different municipal sewage sludge products for potential ecotoxicity. Archives of Environmental Protection, 48 (1), pp. 92–99. DOI:10.24425/aep.2022.140548
  4. Chandrasekaran, S., Basak, T. & Srinivasan, R. (2013).Microwave heating characteristics of graphite based powder mixtures. International Communications in Heat and Mass Transfer, 2013, 48, 22-27. DOI: 10.1016/j.icheatmasstransfer.2013.09.008.
  5. Chen, G., Tian, S., Liu, B., Hu, M., Ma, W., Li, X. (2020). Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste. Waste Management, 103, 268-275. DOI:10.1016/j.wasman.2019.12.031.42.
  6. Cherif Lahimer, M.; Ayed, N.; Horriche, J. & Belgaied, S. (2017). Characterization of plastic packaging additives: Food contact, stability and toxicity. Arabian Journal of Chemistry, 10, S1938-S1954. DOI: 10.1016/j.arabjc.2013.07.022.
  7. Danni, L., Rui, S., Li, X, J., Jing, G., Yu, Y, Z., Hao, R, Y. & Yong, C.A. (2020). review on the migration and transformation of heavy metals in the process of sludge pyrolysis. Resources, Conservation & Recycling, 185, 106452. DOI:10.1016/j.resconrec.2022.106452.
  8. Devi, P. & Saroha, A. K. (2014). Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour Technology, 162, 308-315. DOI:10.1016/j.biortech.2014.03.093.
  9. Dong, Q., Zhang, S., Wu, B., Pi, M., Xiong, Y. & Zhang, H. (2019). Co-pyrolysis of Sewage Sludge and Rice Straw: Thermal Behavior and Char Characteristic Evaluations. Energy & Fuels, 34 (1), 607-615. DOI: 0.1021/acs.energyfuels.9b03800.
  10. Duan, D., Chen, D., Huang, L., Zhang, Y., Zhang, Y., Wang, Q., Xiao, G., Zhang, W., Lei, H. & Ruan, R. (2021). Activated carbon from lignocellulosic biomass as catalyst: A review of the applications in fast pyrolysis process. Journal of Analytical and Applied Pyrolysis, 158, 105246. DOI: 10.1016/j.jaap.2021.105246.
  11. Duan, X., Sun, H., Shao, Z. & Wang, S. (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224, 973-982. DOI:10.1016/j.apcatb.2017.11.051.
  12. Fang, G., Li, J., Zhang, C., Qin, F., Luo, H., Huang, C., Qin, D. & Ouyang, Z. (2022). Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environmental Pollution, 300, 118939. DOI: 10.1016/j.envpol.2022.118939.
  13. Gan, Q., Hou, H., Liang, S., Qiu, J., Tao, S., Yang, L., Yu, W., Xiao, K., Liu, B., Hu, J., Wang, Y. & Yang, J. (2020). Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol. Science of The Total Environment, 725, 138299. DOI: 0.1016/j.scitotenv.2020.138299.
  14. Harvey, O. R., Herbert, B. E., Rhue, R. D. & Kuo, L. J. (2011). Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science& Technology, 45 (13), 5550-6. DOI:10.1021/es104401h.
  15. Issaka, E., Amu-Darko, J. N., Yakubu, S., Fapohunda, F. O., Ali, N. & Bilal, M. (2022). Advanced catalytic ozonation for degradation of pharmaceutical pollutants-A review. Chemosphere, 289, 133208. DOI:10.1016/j.chemosphere.2021.133208.
  16. Jia, H, Z., Zhao, S., Zhou, X, H., Qu, C, T., Fan, D, D. & Wang, C, Y. (2017). Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites. Archives of Environmental Protection, 43 (3), pp. 82–90. DOI: 0.1515/aep-2017-002.
  17. Jin, Z., Jun, W, J., Min, Y. W., Ravi, N., Yan, J, L., Yu, B., Man, Xin, Q, L., Ming, H, W., Christie, P., Yan, Z., Cheng, F, S. & Sheng D, S. (2020). Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility. Environmental Research, 191,110304. DOI:10.1016/j.envres.2020.110034.
  18. Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M. & Behrens, S. (2014). Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science & Technology Letters, 1 (8), 339-344. DOI:10.1021/ez5002209.
  19. Kim, E., Jung, C., Han, J., Her, N., Park, C. M., Jang, M., Son, A. & Yoon, Y. (2016). Sorptive removal of selected emerging contaminants using biochar in aqueous solution. Journal of Industrial and Engineering Chemistry, 36, 364-371. DOI:10.1016/j.jiec.2016.03.004.
  20. Li, H., Dong, X., da Silva, E, B., de Oliveira, L, M., Chen, Y. & Ma, L.Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. DOI:10.1016/j.chemosphere.2017.03.072.
  21. Li, L., Cao, W., Wang, G., Peng, P., Liu, S., Jin, H., Wei, W. & Guo, L. (2022). Experimental and kinetic study of heavy metals transformation in supercritical water gasification of oily sludge. Journal of Cleaner Production, 373, 133898. DOI:10.1016/j.jclepro.2022.133898.
  22. Li, W, J., Jun, M., Yu, L, Z. Ghulam, H, B., Tida, G., Haibo, Z., Zhang, H. B., Li, Z. T., Yi, J. Yu. & Sheng, D. S. (2022). Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals. Environmental Pollution, 302, 119092. DOI:10.1016\/j.envpol.2022.119092
  23. Li, Z., Deng, H., Yang, L., Zhang, G., Li, Y. & Ren, Y. (2018). Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge. Bioresource Technology, 256, 216-223. DOI:10.1016/j.biortech.2018.02.013.
  24. Ma, J., Zhou, B., Zhang, H. & Zhang, W. (2020), Fe/S modified sludge-based biochar for tetracycline removal from water. Powder Technology, 364, 889-900. DOI:10.1016/j.powtec.2019.10.107.
  25. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K. & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2), pp. 42–52. DOI:10.24425/aep.2020.13347.
  26. Mian, M. M., Liu, G., Fu, B. & Song, Y. (2019). Facile synthesis of sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfate activation. Applied Catalysis B: Environmental, 255, 117765. DOI:10.1016/j.apcatb.2019.117765.
  27. Nie, M., Yang, Y., Zhang, Z., Yan, C., Wang, X., Li, H. & Dong, W. (2014). Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chemical Engineering Journal, 246, 373-382. DOI:10.1016/j.cej.2014.02.047.
  28. Oh, S. Y. & Seo, Y. D. (2016). Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms. Environment Science Pollution Research International, 23 (2), 951-61. DOI:10.1007/s11356-015-4201-8
  29. Peng, B., Liu, Q., Li, X., Zhou, Z., Wu, C. & Zhang, H. (2022). Co-pyrolysis of industrial sludge and rice straw: Synergistic effects of biomass on reaction characteristics, biochar properties and heavy metals solidification. Fuel Processing Technology, 230.107211. DOI:10.1016/j.fuproc.2022.107211.
  30. Piekarski, J., Dąbrowski, T., Dąbrowski, J. & Ignatowicz, K. (2021). Preliminary studies on odor removal in the adsorption process on biochars produced form sewage sludge and beekeeping waste. Archives of Environmental Protection, 47(2), pp.20–28. DOI:10.24425/aep.2021.137275
  31. Pulka, J., Wiśniewski, D., Gołaszewski, J. & Białowiec, A. (2016). Is the biochar produced from sewage sludge a good quality solid fuel. Archives of Environmental Protection, 42 (4), pp. 125–134. DOI:10.1515/aep-2016-0043
  32. Qiu, B., Shao, Q., Shi, J., Yang, C. & Chu, H. (2022). Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology, 300, 12195. DOI:10.1016/j.seppur.2022.121925
  33. Shi, Q, D., Zheng, Y., Du, Y., Li, L., Yang, S., Zhang, G., Du, L., Wang, G., Cheng, M. & Liu, Y. (2022). The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes. Environmental Research, 212 (Pt B), 113340. DOI:10.1016/j.envres.2022.113340.
  34. Streit, A. F. M., Cortes, L. N., Druzian, S. P., Godinho, M., Collazzo, G. C. Perondi, D. & Dotto, G. L. (2019). Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Science Total Environmental, 660, 277-287. DOI:10.1016/j.scitotenv.2019.01.027
  35. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46 (3), pp. 49–59. DOI:10.24425/aep.2020.134535
  36. Tang, J., Lv, H., Gong, Y. & Huang, Y. (2015). Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology, 196, 355-363. DOI:10.1016/j.biortech.2015.07.047.
  37. Wallace, C. A., Afzal, M. T. & Saha, G. C. (2019). Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing, 6 (1).8. DOI:10.1016/j.jaap.2015.01.010.
  38. Wang, C., Zhang, X., Wang, W., Sun, J., Mao, Y., Zhao, X. & Song, Z. (2022). A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars: Optimizing and mechanism of heavy metals immobilization. Fuel, 314. (Apr.15) – 122770. DOI:10.1016/j.fuel.2021.122770.
  39. Wang, H., Guo, W., Liu, B., Si, Q., Luo, H., Zhao, Q. & Ren, N. (2020). Sludge-derived biochar as efficient persulfate activators: Sulfurization-induced electronic structure modulation and disparate nonradical mechanisms. Applied Catalysis B: Environmental, 279, 119361. DOI:10.1016/j.apcatb.2020.119361.
  40. Wang, J., Cai, J., Wang, S., Zhou, X., Ding, X., Ali, J., Zheng, L., Wang, S., Yang, L., Xi, S., Wang, M. & Chen, Z. (2022). Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species. Chemical Engineering Journal, 428, 131233. DOI:10.1016/j.cej.2021.131233
  41. Wang, J. & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517. DOI:10.1016/j.cej.2017.11.059.
  42. Wang, S. & Wang, J. (2019). Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chemical Engineering Journal, 356, pp. 350-358. DOI:10.1016/j.cej.2018.09.062
  43. Wang, X., Wei, Ch. Ch., Li, Z., Song, Y., Li, C. & Wang, Y. (2022). Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization. Waste Management, 141, 231-239. DOI:10.1016/j.wasman.2022.02.001.
  44. Wu, W., Zhu, S., Huang, X., Wei, W. & Ni, B, J. (2021). Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions. Journal Hazard Materials, 408, 124454. DOI:10.1016/j.jhazmat.2020.124454.
  45. Xin, Z., Bao, W. Z., Hui, L. & Liu, J. L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals insewage sludge biochars Environmental Technology & Innovation, 26, 102288. DOI:10.1016/j.eti.2022.102288.
  46. Xu, L., Wu, C., Liu, P., Bai, X., Du, X., Jin, P., Yang, L., Jin, X., Shi, X. & Wang, Y. (2020). Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants. Chemical Engineering Journal, 387, 124065. DOI:10.1016/j.cej.2020.124065.
  47. Yan, L., Liu, Y., Zhang, Y., Liu, S., Wang, C., Chen, W., Liu, C., Chen, Z. & Zhang, Y. (2020). ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology, 297, 122381. DOI:10.1016/j.biortech.2019.122381.
  48. Yang, T, S., Zhang, Y., Cao, X, Q., Zhang, J., Kan, Y, J., Wei, B., Zhang, Y. Z. M., Wang, Z. Z., Jiao, Z., Zhang, X. X. & Li, R. (2022). Water caltrop-based carbon catalysts for cooperative adsorption and heterogeneous activation of peroxymonosulfate for tetracycline oxidation via electron transfer and non-radical pathway. Applied Surface Science, 606, 164823. DOI:10.1016/j.apsusc.2022.154823.
  49. Ye, G. R., Zhou, J. H., Huang, R. T., Ke, W. J., Peng, Y. C., Zhou, Y. X., Weng, Y., Ling, C. T. & Pan, W. X. (2022). Magnetic sludge-based biochar derived from Fenton sludge as an efficient heterogeneous Fenton catalyst for degrading Methylene blue. Journal of Environmental Chemical Engineering, 10, 107242. DOI:10.1016/j.jece.2022.107242.
  50. Yu, H., Zhang, D., Gu, L., Wen, H. & Zhu, N. (2022). Coupling sludge-based biochar and electrolysis for conditioning and dewatering of sewage sludge: Effect of char properties. Environmental Science and Ecotechnology, 2022, 214 (Pt 3), 113974. DOI:10.1016/j.envres.2022.113974.
  51. Yu, J., Tang, L., Pang, Y., Zeng, G., Wang, J., Deng, Y., Liu, Y., Feng, H., Chen, S. & Ren, X. (2019). Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chemical Engineering Journal, 364, 146-159. DOI:10.1016/j.cej.2019.01.163.
  52. Yu, J., Zhu, Z., Zhang, H., Shen, X., Qiu, Y., Yin, D. & Wang, S. (2020). Persistent free radicals on N-doped hydrochar for degradation of endocrine disrupting compounds. Chemical Engineering Journal, 398, 125538. DOI:10.1016/j.cej.2020.125538.
  53. Zeng, H. P., Li, J. X., Xu, J. X., Qi, W., Hao, R. X., Gao, G. W., Lin, D., Li, D. & Zhang, J. (2022). Preparation of magnetic N-doped iron sludge based biochar and itspotential for persulfate activation and tetracycline degradation. Journal of Cleaner Production, 378, 134519. DOI:10.1016/j.jclepro.2022.134519.
  54. Zhang, A., Li, X., Xing, J. & Xu, G. (2020). Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 8 (4), 104196. DOI:10.1016/j.jece.2020.104196.
  55. Zhang, H., Xue, G., Chen, H. & Li, X. (2018). Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere, 191, pp. 64-71. DOI:10.1016/j.chemosphere.2017.10.026.
  56. Zhang, L., Pan, J., Liu, L., Song, K. & Wang, Q. (2019). Combined physical and chemical activation of sludge-based adsorbent enhances Cr(Ⅵ) removal from wastewater. Journal of Cleaner Production, 238,11767. DOI:10.1016/j.jclepro.2019.117904
  57. Zhang, S., Lv, J., Han, R. & Zhang, S. (2022). Superoxide radical mediates the transformation of tetrabromobisphenol A by manganese oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129807. DOI:10.1016/j.colsurfa.2022.129807.
  58. Zhang, Y., Jiang, Q., Xie, W., Wang, Y. & Kang, J. (2019). Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover. Biomass and Bioenergy, 122, 175-182. DOI:10.1016/j.biombioe.2019.01.035.






DOI: 10.24425/aep.2023.145892

Abstracting & Indexing

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)




BIOSIS Citation Index





Engineering Village


Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs






Ulrich's Periodicals Directory


Web of Science