Details
Title
Utilizing of the Statistical Analysis for Evaluation of the Properties of Green Sand MouldJournal title
Archives of Foundry EngineeringYearbook
2023Volume
vol. 23Issue
No 3Authors
Affiliation
Abdulamer, Dheya : University of Technology, IraqKeywords
Green sand ; mixing time ; Compactability ; compressive strength ; ANOVADivisions of PAS
Nauki TechniczneCoverage
67-73Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Chate, M.G.R. Patel, M.G.C. Parappagoudar, M.B. & Deshpande, A.S. (2017). Modeling and optimization of Phenol Formaldehyde Resin sand mould system. Archives of Foundry Engineering. 17(2), 162-170. DOI: https://doi.org/10.1515/afe-2017-0069.[2] Saikaew, C. & Wiengwiset, S. (2012).Optimization of molding sand composition for quality improvement of iron castings. Applied Clay Science. 67-68, 26-31. https://doi.org/10.1016/j.clay.2012.07.005.
[3] Beňo, J. Poręba, M. & Bajer, T. (2021). Application of non-silica sands for high quality castings. Archives of Metallurgy and Materials. 66(1), 25-30. DOI: 10.24425/amm.2021.134754.
[4] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance. 28(7), 3994-4001. https://doi.org/10.1007/s11665-019-04089-w.
[5] Rundman, K.B. (2000). Metal casting. Department of Material Science and Engineering Michigan Technology University.
[6] Anwar, N., Sappinen, T., Jalava, K., & Orkas, J, (2021). Comparative experimental study of sand and binder for flowability and casting mold quality. Advanced Powder Technology. 32(6), 1902-1910, https://doi.org/10.1016/j.apt.2021.03.040.
[7] Ihom, A.P., Olubajo, O.O. (2002). Investigation of bende ameki clay foundry properties and its suitability as a binder for sand casting, NMS proceedings 19th AGM.
[8] Ihom, A.P. Yaro, S.A. & Aigbodion, V.S. (2006). Application of multiple regression - model to the study of foundry clay bonded sand mixtures. JICCOTECH. 2, 161-168.
[9] Abdulamer, D. (2021). Investigation of flowability of the green sand mould by remote control of portable flowability sensor. Archives of Materials Science and Engineering. 112(2), 70-76, DOI: https://doi.org/10.5604/01.3001.0015.6289.
[10] Abdulamer, D. & Kadauw, A. (2021). Simulation of the moulding process of bentonite-bonded green sand, Archives of Foundry Engineering. 21(1), 67-73. DOI 10.24425/afe.2021.136080.
[11] Jain, R.K. (2009). Production Technology. Delhi: Khana Publishers.
[12] Ihom, A.P. (2012). Foundry Raw Materials for Sand Casting and Testing Procedures. Nigeria: A2P2 Transcendent Publishers.
[13] Ihom, A.P., Agunsoye, J., Anbua, E.E. & Bam, A. (2009). The use of statistical approach for modeling and studying the effect of ramming on the mould parameters of Yola natural sand. Nigerian Journal of Engineering. 16(1), 186-192.
[14] Kothari, C.R., Garg, G. (2014). Research Methodology: Methods and Techniques. New Delhi: New Age International (P) Ltd., Publishers.
[15] Fatoba, O.S., Adesina, O.S., Farotade, G.A. & Adediran, A.A. (2017). Modelling and optimization of laser alloyed AISI 422 stainless steel using taguchi approach and response surface model (RSM). Current Journal of Applied Science and Technology, 23(3), 1-19. DOI: 10.9734/CJAST/2017/24512.
[16] Abdulamer, D. (2023). Impact of the different moulding parameters on properties of the green sand mould. Archives of Foundry Engineering. 23(2), 5-9. DOI: 10.24425/afe.2023.144288