Tytuł artykułu

The Effect of Microalloying (Nb, V) and Interstitial (C, N) Elements on Mechanical Properties of Microalloyed Steels

Tytuł czasopisma

Archives of Foundry Engineering




vol. 23


No 4


Marynowski, Przemysław : AGH University of Krakow, Poland ; Hojny, Marcin : AGH University of Krakow, Poland ; Dębiński, Tomasz : AGH University of Krakow, Poland


Słowa kluczowe

Microalloyed steels ; Mechanical properties ; precipitations ; carbonitrides

Wydział PAN

Nauki Techniczne




The Katowice Branch of the Polish Academy of Sciences


[1] Adrian H. (2011). Numerical modeling of heat treatment processes. AGH Kraków. (in Polish).
[2] European Committee for Standardization (2019). Hot Rolled Products of Structural Steels: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition
[3] Jan, F., Jaka, B. & Grega, K. (2021). Grain size evolution and mechanical properties of Nb, V–Nb, and Ti–Nb boron type S1100QL steels. Metals. 11(3), 492.
[4] Gladman, T. (1997). The physical metallurgy of microalloyed steels institute of materials. vol. 363. London, UK. Search in. [5] Blicharski, M. (2004). Materials engineering: steel. WNT: Warszawa. (in Polish).
[6] Marynowski, P., Adrian, H. & Głowacki, M. (2019) Modeling of the kinetics of carbonitride precipitation process in high-strength low-alloy steels using cellular automata method. Journal of Materials Engineering and Performance. 28(7), 4018-4025.
[7] Marynowski, P., Adrian, H. & Głowacki, M. (2018). Cellular Automata model of carbonitrides precipitation process in steels. Computer Methods in Materials Science. 18(4), 120-128. ISSN 1641-8581.
[8] Marynowski, P., Adrian, H. & Głowacki, M. (2013). Cellular automata model of precipitation in microalloyed niobium steels. Computer Methods in Materials Science. 13(4), 452-459. ISSN 1641-8581.
[9] Adrian, H. (1992). Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminum. Materials Science and Technology. 8, 406-420.
[10] Adrian, H. (1995). Thermodynamic model of carbonitride precipitation in low-alloy steels with increased strength with application to hardenability tests. Kraków: AGH. (in Polish).
[11] Adrian, H. (1995). Thermodynamic calculations of carbonitride precipitation as a guide for alloy design of microalloyed steels. In Proceedings of the International Conference Microalloying'95, 11-14 June 1995(285-307). Pittsburgh.
[12] Adrian, H. (1999). A mechanism for the effect of vanadium on the hardenability of medium carbon manganese steel. Materials Science and Technology. 15, 366-378.
[13] Cuddy, L.J. & Raley, J.C. (1987). Austenite grain coarsening in microalloyed steels. Metallurgical Transactions A. 14, 1989-1995.
[14] Cuddy, L.J. (1984). The effect of micro alloy concentration on the recrystallization of austenite during hot deformation. Processing of Microalloyed Austenite (Pittsburgh) TMS-AIME Warrendale PA.
[15] Goldschmidt, H.J. (1967). Interstitial Alloys. Butterworth-Heinermann.
[16] Lifschitz, I.M. & Slyozov, V.V. (1961). The kinetics of precipitation from supersaturated solid solution. Journal of Physics and Chemistry of Solids. 19(1/2), 35-50.
[17] Zając, S., Siwecki, T. & Hutchinson, W.B. (1998). Lagneborg R. The role of carbon in enhancing precipitation strengthening of V-microalloyed steels. Material Science Forum. 284, 295-302.
[18] Langberg, R., Hutchinson, W.B., Siwecki, T. & Zając, T. (2014). The role of vanadium in microalloyed steels. Sweden: Swerea KIMAB






DOI: 10.24425/afe.2023.146687 ; eISSN 2299-2944