Determining parameters to optimize the pulling force for the luffing jib tower cranes by Taguchi method

Journal title

Archive of Mechanical Engineering




vol. 70


No 3


Duong, Truong Giang : Faculty of Mechanical Engineering, Hanoi University of Civil Engineering, Hanoi, Vietnam



geometric size ; luffing jib ; optimal technique ; pulling force ; Taguchi method

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] H. Hyun, M. Park, D. Lee, and J.Lee. Tower crane location optimization for heavy unit lifting in high-rise modular construction. Buildings, 11(3):121, 2021. doi: 10.3390/buildings11030121.
[2] T.G. Duong. Research on fundamental calculation of tower cranes examining into the elastic deflections of tower bod. Journal of Science and Technology in Civil Engineering, 11(4):139–144, 2017.
[3] T.G. Duong. Selecting control method of hydraulic resistances in hydraulic system for tower crane climbing mechanism. Journal of Science and Technology in Civil Engineering,14(3V):140–148, 2020. doi: 10.31814/stce.nuce2020-14(3V)-13.
[4] B. Li, L. Lei, and B. Liu. Research of tower crane suspended climb supporting system. Applied Mechanics and Materials, 130-134:1889–1893, 2012. doi: 10.4028/
[5] S. Chwastek. Optimization of crane mechanisms to reduce vibration. Automation in Construction, 119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.
[6] S. Chwastek. Finding the globally optimal correlation of cranes drive mechanisms. Mechanics Based Design of Structures and Machines, 51(6):3230–3241, 2023. doi: 10.1080/15397734.2021.1920978.
[7] Y. Xue, M.S. Ji, N. Wu, Y. Xue, and W. Wang. The dimensionless-parameter robust optimization method based on geometric approach of pulley block compensation in luffing mechanism. In: Proceedings of the 2015 International Conference of Electrical, Automation and Mechanical Engineering, pages 157–160, Atlantis Press 2015. doi: 10.2991/eame-15.2015.43.
[8] X. Li. Truss structure optimum design and its engineering application. Computers \amp; Structures, 36(3): 567–573, 1990. doi: 10.1016/0045-7949(90)90291-9.
[9] R. Šelmić, P. Cvetković, R. Mijailović, and G. Kastratović. Optimum dimensions of triangular cross-section in lattice structures. Meccanica, 41:391–406, 2006. doi: 10.1007/s11012-005-5337-2.
[10] R. Mijailović and G. Kastratović. Cross-section optimization of tower crane lattice boom. Meccanica, 44:599–611,2009. doi: 10.1007/s11012-009-9204-4.
[11] J. Wang, L. Li, and L. Hao. APDL-based optimization of the boom of luffing jib tower cranes. Advanced Materials Research, 291-294:2566–2573, 2011. doi: 10.4028/
[12] Q. Wu, Q. Zhou, X. Xiong and R. Zhang. Periodic topology and size optimization design of tower crane boom. International Scholarly and Scientific Research \amp; Innovation, 11(8), 2017. doi: 10.5281/zenodo.1131629.
[13] X-L. Cheng, H-L. Yang, and B. Zhu. Structure lightweight design of luffing jib tower crane jib. Machine Tool \amp; Hydraulics, 46(18): 81–86,99, 2018. doi: href="">10.3969/j.issn.1001-3881.2018.18.012.
[14] D.S. Kim and J. Lee. Structural design of a level-luffing crane through trajectory optimization and strength-based size optimization. Structural and Multidisciplinary Optimization, 51: 515–531, 2015. doi: 10.1007/s00158-014-1139-2.
[15] Q. Jiao, Y. Qin, Y. Han, and J. Gu. Modeling and optimization of pulling point position of luffing jib on portal crane. Mathematical Problems in Engineering, 2021: 4627257, 2021. doi: 10.1155/2021/4627257.
[16] FEM 1.001: Rules for the Design of Hoisting Appliances (3rd Edition Revised 1998.10.01).
[17] R.V. Rao and V.J. Savsani. Mechanical Design Optimization Using Advanced Optimization Techniques. Springer, 2012.
[18] A. Arunkumar, S. Ramabalan, and D. Elayaraja. Optimum design of stair-climbing robots using Taguchi method. Intelligent Automation\amp; Soft Computing, 35(1):1229–1244, 2023. doi: 10.32604/iasc.2023.027388.
[19] M. Milos, I. Lozica, P. Nenad, and K. Nenad. Determination of the most influential factor during the rope winding process around winch drums using Taguchi method. 8th Iinternational Conference on Tribology, pages 794-798, 2014, Sinaia, Romania.
[20] P.J. Gamez-Montero, and E. Bernat-Maso. Taguchi techniques as an effective simulation-based strategy in the design of numerical simulations to assess contact stress in gerotor pumps. Energies, 15(19):7138, 2022. doi: 10.3390/en15197138.
[21] D-C. Chen, C-S. You, F-L. Nian, and M-W. Guo. Using the Taguchi method and finite element method to analyze a robust new design for titanium alloy prick hole extrusion, Procedia Engineering, 10:82–87, 2011. doi: 10.1016/j.proeng.2011.04.016.
[22] H-J. Chen, H-C. Lin, C-W .Tang. Application of the Taguchi method for optimizing the process parameters of producing controlled low-strength materials by using dimension stone sludge and lightweight aggregates. Sustainability, 13(10):5576, 2021. doi: 10.3390/su13105576.
[23] R. Barea, S. Novoa, F. Herrera, B. Achiaga, and N. Candela. A geometrical robust design using the Taguchi method: application to a fatigue analysis of a right angle bracket. DYNA, 85(205):37–46, 2018. doi: 10.15446/dyna.v85n205.67547.
[24] T. G. Duong. Instructions Manual for Calculating the Lifting Machine. Construction Publisher, Hanoi, Vietnam, 2019.






DOI: 10.24425/ame.2023.146845 ; ISSN 0004-0738, e-ISSN 2300-1895