Details
Title
Quantitative and qualitative analysis of slags from zinc and lead metallurgyJournal title
Archives of Environmental ProtectionYearbook
2023Volume
vol. 49Issue
No 3Affiliation
Nocoń, Milena : Silesian University of Technology, Faculty of Environmental Engineering and Energy, Department of Water and Wastewater Engineering, Poland ; Korus, Irena : Silesian University of Technology, Faculty of Environmental Engineering and Energy, Department of Water and Wastewater Engineering, Poland ; Loska, Krzysztof : Silesian University of Technology, Faculty of Environmental Engineering and Energy, Department of Water and Wastewater Engineering, PolandAuthors
Keywords
Heavy metal-containing slags ; BCR sequential extraction ; zinc and lead metallurgy ; AASDivisions of PAS
Nauki TechniczneCoverage
26-37Publisher
Polish Academy of SciencesBibliography
- Alan, M. and D. Kara (2019). Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey, Talanta, 194, pp. 189-198. DOI: 10.1016/j.talanta.2018.10.030.
- Baczewska, A. H., W. Dmuchowski, B. Gworek, P. Dąbrowski and P. Brągoszewska (2016). Comparison of bioindication methods for assessing the level of air pollution with heavy metals in Warsaw, Przemysł Chemiczny, 95/3, pp. 334-338. DOI: 10.15199/62.2016.3.1.
- Bernasowski, M., A. Klimczyk and R. Stachura (2017). Overview of Zinc Production in Imperial Smelting Process. Iron and Steelmaking Conference 4-6.10.2017, Horní Bečva, Česká republika.
- Briffa, J., E. Sinagra and R. Blundell (2020). Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6, 9, pp. 1-26. DOI: 10.1016/j.heliyon.2020.e04691.
- Cabała, J. (2009). Heavy metals in the soil environment of Olkusz Zn-Pb ore mining regions. Wydawnictwo Uniwersytetu Śląskiego Katowice 2009 (in Polish)
- Chao-Yin, K., W. Chung-Hsin and L. Shang-Lien (2005). Removal of copper from industrial sludge by traditional and microwave acid extraction, Journal of Hazardous Materials, 120, 1-3, pp. 249-256. DOI: 10.1016/j.jhazmat.2005.01.013.
- Dan Chen, Wing Yin Aua, A. R. Stijn van Ewijk and J. Stegemann (2021). Elemental and mineralogical composition of metal-bearing neutralisation sludges and zinc speciation – A review, Journal of Hazardous Materials, 416, 2. DOI: 10.1016/j.jhazmat.2021.125676.
- Ettler, V., F. Bodenan and O. Legendre (2001). Primary phases and natural weathering of old lead-zind pyrometallurgical slag from Pribram, Czech Republic, The Canadian Mineralogist, 39, pp. 873-888. DOI: 10.2113/gscanmin.39.3.873.
- Gao, H., G. F. Koopmans, J. Song, J. E. Groenenberg, X. Liu, R. N. J. Comans and L. Weng (2022). Evaluation of heavy metal availability in soils near former zinc smelters by chemical extractions and geochemical modelling, Geoderma, 423. DOI: 10.1016/j.geoderma.2022.115970.
- Herreweghe, S. V., R. Swennen, C. Vandecasteele and V. Cappuyns (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples, Environmental Pollution, 122, pp. 323-342. DOI: 10.1016/S0269-7491(02)00332-9.
- Izydorczyk, G., K. Mikula, D. Skrzypczak, K. Moustakas, A. Witek-Krowiak and K. Chojnacka (2021). Potential environmental pollution from copper metallurgy and methods of management, Environmental Research, 197, pp. 1-11. DOI: 10.1016/j.envres.2021.111050.
- Jin, Z., T. Liu, Y. Yang and D. Jackson (2014). Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition, Ecotoxicology and Environmental Safety, 104, pp. 43-50. DOI: 10.1016/j.ecoenv.2014.02.003.
- Jonczy, I., M. Kamińska, B. Chwedorowicz and B. Kowalski (2017). The use of X-ray Spectral Analysis in Microareas in the determination of elements accompanying minerals of Zinc-Lead Ores from the Klucze I deposit. Systemy Wspomagania w Inżynierii Produkcji Górnictwo Zrównoważonego Rozwoju 2016, P. A. Nova. (in Polish)
- Ke, W., J. Zeng, F. Zhu, X. Luo, J. Feng, J. He and S. Xue (2022). Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting, Environmental Pollution, 307, pp. 1-11. DOI: 10.1016/j.envpol.2022.119586.
- Król, A., K. Mizerna and M. Bożym (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag, Journal of Hazardous Materials, 384, 121502, pp. 1-9. DOI: 10.1016/j.jhazmat.2019.121502.
- Kruk, M. (2022). Comparison of digestion methods of slag samples from zinc and lead industry to identify the content of selected metals. ArchaeGraph. Łódź 2022 (in Polish)
- Lestari, F. Budiyanto and D. Hindarti (2018). Speciation of heavy metals Cu, Ni and Zn by modified BCR sequential extraction procedure in sediments from Banten Bay, Banten Province, Indonesia, IOP Conference Series: Earth and Environmental Science, 118, 1, pp. 1-7. DOI: 10.1088/1755-1315/118/1/012059.
- Li, L., Y. Zhang, J. A. Ippolito, W. Xing, K. Qiu and H. Yang (2020). Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans, Environmental Pollution, 257, pp. 1-7. DOI: 10.1016/j.envpol.2019.11361.
- Li, Y., I. Perederiy and V. G. Papangelakis (2008). Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching, Journal of Hazardous Materials, 152, pp. 607-615. DOI: 10.1016/j.jhazmat.2007.07.052.
- Luo, S., S. Zhao, P. Zhang, J. Li, X. Huang, B. Jiao and D. Li (2022). Co-disposal of MSWI fly ash and lead–zinc smelting slag through alkali-activation technology, Construction and Building Materials, 327, pp. 1-10. DOI: 10.1016/j.conbuildmat.2022.127006.
- Margui, V. Salvado, I. Queralt and M. Hidalgo (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes, Analytica Chimica Acta, 524, pp. 151-159. DOI: 10.1016/j.aca.2004.05.043.
- Nowińska, K. and Z. Adamczyk (2013). The mobility of accompanying elements to wastes from metallurgy of the zinc and the leadon in the environment, Górnictwo i Geologia, T. 8, z. 1, pp. 77-87. (in Polish)
- Nowińska, K. and Z. Adamczyk (2017). Slags of the Imperial Smelting Process for Zn and Pb production, Reference Module in Materials Science and Materials Engineering, pp. 1-5. DOI: 10.1016/B978-0-12-803581-8.03607-9.
- Pan, D. a., L. Li, X. Tian, Y. Wu, N. Cheng and H. Yu (2019). A review on lead slag generation, characteristic, and utilization, Resources, Conservation & Recycling, 146, pp. 140-155. DOI: 10.1016/j.resconrec.2019.03.036.
- Patle, A., R. Kurrey, M. K. Deb, T. K. Patle, D. Sinha and K. Shrivas (2022). Analytical approaches on some selected toxic heavy metals in the environment and their socio-environmental impacts: A meticulous review, Journal of the Idian Chemical Society, 99, pp. 1-12. DOI: 10.1016/j.jics.2022.100545.
- Rauret, G., J. Lopez-Sanchez, D. Luck, M. Yli-Halia, H. Muntau and P. Quevauviller (2001). EUR 19775 EN. E. Commission. Belgium.
- Rauret, G., J. F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure and P. Quevauviller (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, Journal of Environmental Monitoring,1, pp. 57-61. DOI: 10.1039/a807854h
- Różański, S. (2013). Fractionation of selected heavy metals in agricultural soils, Ecological Chemistry and Engineering S, 20, 1, pp. 117-125. DOI: 10.2478/eces-2013-0009.
- Seignez, N., D. Bulteel, D. Damidot, A. Gauthier and J.-L. Potdevin (2006). Weathering of metallurgical slag heaps: multi-experimental approach of the chemical behaviours of lead and zinc, Waste Management and the Environment III, 92, pp. 31-40. DOI: 10.2495/WM060041.
- Singh, A. and M. K. Chandel (2022). Mobility and environmental fate of heavy metals in fine fraction of dumped legacy waste: Implications on reclamation and ecological risk, Journal of Environmental Management, 304, pp. 1-11. DOI: 10.1016/j.jenvman.2021.114206.
- Singh, G., S. Das, A. A. Ahmed, S. Saha and S. Karmakar (2015). Study of Granulated Blast Furnace Slag as Fine Aggregates in Concrete for Sustainable Infrastructure, Procedia - Social and Behavioral Sciences, 195, pp. 2272-2279. DOI: 10.1016/j.sbspro.2015.06.316.
- Sobanska, S., D. Deneele, Barbillat and B. A. Ledesert (2016). Natural weathering of slags from primary Pb-Zn smelting as evidenced by Raman microspectroscopy, Applied Geochemistry, 64, pp. 107-117. DOI: 10.1016/j.apgeochem.2015.09.011.
- Tlustos, P., J. Szakova, A. Starkova and D. Pavlikova (2005). A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil, Central European Journal of Chemistry, 3, 4, pp. 830-851. DOI: 10.2478/BF02475207.
- Wali, A., G. Colinet and M. Ksibi (2014). Speciation of Heavy Metals by Modified BCR Sequential Extraction in Soils Contaminated by Phosphogypsum in Sfax, Tunisia, Environmental Research, Engineering and Management, 4, 70, pp. 14-26. DOI: 10.5755/j01.erem.70.4.7807.
- Wang, J., Y. Jiang, J. Sun, J. She, M. Yin, F. Fang, T. Xiao, G. Song and J. Liu (2020). Geochemical transfer of cadmium in river sediments near a lead-zinc smelter, Ecotoxicology and Environmental Safety, 196, pp. 1-10. DOI: 10.1016/j.ecoenv.2020.110529.
- Warchulski, R. and K. Szopa (2014). Phase composition of Katowice – Wełnowiec pytometallurgical slags: preliminary SEM study, Contemporary Trends in Geoscience, 3, pp. 76-81. DOI: 10.2478/ctg-2014-0025.
- Xu, D.-M., R.-B. Fu, Y.-H. Tong, D.-L. Shen and X.-P. Guo (2021). The potential environment risk implications of heavy metals based on their geochemical and mineralogical characteristic in the size-segregated zinc smelting slags, Journal of Cleaner Production, 315, pp. 1-13. DOI: 10.1016/j.jelepro.2021.128199.
- Yin, N.-H., Y. Sivry, F. Guyou, P. N. L. Lens and E. D. v. Hullebusch (2016). Evaluation on chemical stability of lead blast furnance (LBF) and imperial smelting furnance (ISF) slags, Journal of Environmental Management, 180, pp. 310-323. DOI: 10.1016/j.jenvman.2016.05.052.
- Zemberyova, M., J. Bartekova and I. Hagarova (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins, Talanta, 70, pp. 973-978. DOI: 10.1016/j.talanta.2006.05.057.
- Zhang, S., N. Zhu, W. Shen, X. Wei, F. Li, W. Ma, F. Mao and P. Wu (2022). Relationship between mineralogical phase and bound heavy metals in copper smelting slags, Resources, Conservation & Recycling, 178, pp. 1-7. DOI: 10.1016/j.resconrec.2021.106098.
Date
2023.09.20Type
ArticleIdentifier
DOI: 10.24425/aep.2023.147326DOI
10.24425/aep.2023.147326Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science